
Eskimo User and Administration Guide

eskimo.sh - https://www.eskimo.sh - 2019-2023



Table of Contents
1. Eskimo Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
1.1. Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
1.2. Why is Eskimo cool ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
1.3. Eskimo’s DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
1.4. Eskimo Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
1.4.1. Technical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
1.4.2. Typical Application architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
1.4.3. Sample System Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
1.5. Eskimo building. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
2. Eskimo Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
2.1. Installation target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
2.1.1. Local Eskimo installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
2.1.2. Installing eskimo on Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
2.2. Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
2.2.1. Java 11 or greater. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
2.2.2. System requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
2.2.3. Network requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
2.2.4. Prerequisites on eskimo cluster nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
Minimum hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
2.2.5. Required packages installation and Internet access on cluster nodes . . . . . . . . . . . . . . . . . . . .  10
Eskimo system user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12
Protecting eskimo nodes with a firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12
2.3. Extract archive and install Eskimo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
2.3.1. SystemD Unit file Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
2.3.2. Extracted Archive layout and purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
2.3.3. Utility commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
2.4. Access eskimo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
2.5. First run and initial setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
2.5.1. Building packages locally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
Instructions to install these tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
2.5.2. Checking for updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
2.6. Typical startup issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
2.6.1. eskimo-users.json cannot be written . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
2.7. Setting up SSH Public Key Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
2.7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
2.7.2. How Public Key Authentication Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
2.7.3. Generate an SSH Key Pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
2.7.4. Configure an SSH/SFTP User for Your Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
Method 1: Using ssh-copy-id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
Method 2: Manual Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
2.7.5. Log In Using Your Private Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
2.7.6. Granting Access to Multiple Keys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
2.7.7. Use the private key in eskimo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
3. Setting up the eskimo cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
3.1. Services settings configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22



3.2. Nodes and native services layout configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
3.2.1. Adding nodes to the eskimo cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
3.2.2. Deploying services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
3.2.3. Master services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
3.2.4. Slave services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
3.2.5. Applying nodes configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
3.2.6. Forcing re-installation of a service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
3.3. Kubernetes Services Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
4. Eskimo User Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
4.1. The menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
4.2. Eskimo System Status Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
4.2.1. Action Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28
4.3. Acting on services reporting errors upon installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28
4.4. SSH and SFTP Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28
4.4.1. SSH Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28
4.4.2. SFTP File Manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
4.5. Services Web Consoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
4.5.1. Demo Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
4.5.2. The DemoVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
4.5.3. Deactivating Demo Mode on the demo VM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
4.6. Docker images versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
5. Eskimo Architecture and Design Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
5.1. SSH Tunelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
5.2. Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
5.3. Confidentiality and cluster protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
5.3.1. Data Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
5.3.2. User rights segregation and user imprersonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
5.4. High availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
6. Eskimo pre-Packaged services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
6.1. Eskimo services operation principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
6.1.1. SystemD unit configuration files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
6.1.2. Kubernetes Deployment descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
6.1.3. Commands wrappers for kafka, logstash, spark and flink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
6.1.4. A specific generic wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36
6.1.5. Reloading a Service UI IFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36
6.2. NTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36
6.3. Zookeeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36
6.3.1. Zookeeper specificities within Eskimo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37
6.4. GlusterFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37
6.4.1. Gluster Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37
6.4.2. Gluster mounts management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
6.4.3. Gluster specificities within Eskimo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
6.5. Kubernetes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
6.5.1. Kubernetes specificities within Eskimo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
Kubernetes services name resolution on host nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
Kubernetes Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40
6.6. Elastic Logstash. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40
6.6.1. Logstash specificities within Eskimo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40



6.6.2. logstash-cli package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
6.6.3. Gluster shares for Logstash. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
6.7. ElasticSearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
6.8. Cerebro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
6.9. Elastic Kibana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
6.9.1. Kibana specificities within Eskimo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
6.9.2. Pre-packaged Kibana Dashboards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
6.10. Apache Kafka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
6.10.1. kafka-cli package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
6.11. Kafka Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
6.12. Apache Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
6.12.1. spark-cli package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
6.12.2. Gluster shares for Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
6.12.3. Other Spark specificities within Eskimo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44
6.13. Apache Flink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44
6.13.1. flink-cli package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44
6.13.2. Gluster shares for Flink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44
6.13.3. pyflink programs requirements on Eskimo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44
6.13.4. Other Flink specificities within Eskimo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45
6.14. Apache zeppelin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45
6.14.1. Zeppelin specificities within Eskimo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45
6.14.2. Shared or Per Note interpreters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46
6.14.3. Eskimo packaged Zeppelin Sample notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46
ElasticSearch Demo (Queries) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46
Logstash Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46
Spark RDD Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46
Spark ML Demo (Regression). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Spark SQL Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Spark Integration ES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Spark Integration Kafka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Flink Batch Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Flink Streaming Demo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Flink Integration Kafka. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Kafka Streams Demo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
6.15. Prometheus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
6.15.1. Prometheus specificities within Eskimo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
6.16. Grafana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
6.16.1. Grafana specificities within Eskimo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
Admin user / password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
Grafana dashboards provisionning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
6.16.2. Pre-packaged Grafana Dashboards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
7. Limitations within Eskimo Community Edition version 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
7.1. etcd and node removal / re-installation after initial installation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
7.1.1. Node removal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
7.1.2. Node addition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
7.1.3. Node re-installation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
Appendix A: Copyright and License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52



Chapter 1. Eskimo Introduction
A state of the art Big Data Infrastructure and Management Web Console to build, manage and
operate Big Data 2.0 Analytics clusters on Kubernetes.

Eskimo is in a certain way the Operating System of your Big Data Cluster:

o A plug and play, working out of the Box, Big Data Analytics platform fulfilling enterprise
environment requirements.

o A state of the art Big Data 2.0 platform

- based on Kubernetes (and heavily relying on Docker and SystemD as well)

- packaging Gluster, Spark, Kafka, Flink and ElasticSearch

- with all the administration and management consoles such as Cerebro, Kibana, Zeppelin,
Kafka-Manager, Grafana and Prometheus and of course the Kubernetes Dashboard.

o An Administration Application aimed at drastically simplifying the deployment,
administration and operation of your Big Data Cluster

o A Data Science Laboratory and Production environment where Data Analytics is both

- developed and

- operated in production

Eskimo is as well:

o a collection of ready to use docker containers packaging fine-tuned and highly customized
plug and play services with all the nuts and bolts required to make them work perfectly
together.

o a framework for developing, building and deploying Big Data and NoSQL services based on
Kubernetes, Docker and SystemD.

1.1. Key Features
Eskimo key features are as follows:



Abstraction of Location

Just define where you want to run which services and let eskimo take care
of everything.

Move services between nodes or install new services in just a few clicks.

Don’t bother remembering where you installed Web consoles and UI
applications, Eskimo wraps them all in a single and unified UI.
Eskimo Web Console

Eskimo’s tip of the iceberg is its flagship web console.

The Eskimo Console is the single and entry point to all your cluster
operations, from services installation to accessing Kibana, Zeppelin and
other UI applications.

The Eskimo Console also provides SSH consoles, File browser access and
monitoring to your cluster.
Services Framework

Eskimo is a Big Data Components service development and integration
framework based on Kubernetes, Docker and SystemD.

Eskimo provides out of the box ready-to use components such as Spark,
Flink, ElasticSearch, Kafka, Gluster, Zeppelin, etc.

Eskimo also enables the user to develop his own services very easily.

1.2. Why is Eskimo cool ?
o Taking care of it !

Making Zookeeper, GlusterFS; Kubernetes, Kafka, ElasticSearch, Flink, Spark, etc. work
perfectly together is difficult and tedious.
Eskimo takes care of everything.

o Big Data 2.0
Most if not all private-cloud Big Data Platform such as Hortonworks, Cloudera, MapR, etc.
are based on Hadoop, HDFS, YARN, etc. which are quite old components and technology.
Eskimo is based on GlusterFS, Kubernetes, ElasticSearch, Kafka and Spark, cutting edge
components from a newer generation.

o Leveraging on docker
Most if not all private-cloud Big Data Platform such as those mentioned above would install
components natively, thus having strong requirements and impacts on underlying nodes.
Eskimo uses docker to isolate Eskimo components from the underlying host OS and vice
versa, enabling transparent upgrades, relocations of services, etc.

o Eskimo is an open platform.
Eskimo works out of the box but users and administrators can customize and extend it the
way they like, the way they decide.



1.3. Eskimo’s DNA
Big Data Scientist

With eskimo, Big Data Scientists can prototype and run their analytics use
cases on a thousand nodes cluster should they need it.

With Flink ML and Spark ML natively available on Flink and Spark and usable
from within Zeppelin, Data Scientists can bring their mission to the next level:
the big data way.

SciKit Learn and TensorFlow are also available from within Zeppelin of
course.

Develop your business analytics processes and deploy them in production
operations in a few clicks.
Big Data 2.0

In contrary to popular Hadoop-based and other Big Data Platforms, Eskimo
is based on cutting-edge technologies:

o GlusterFS instead of HDFS

o Spark instead of Hive or Pig

o Flink and Kafka instead of Storm

o Kubernetes instead of Yarn

o Docker instead of native deployment

o ElasticSearch instead of HBase or Hive

These new generation Big Data components form together a Big Dats 2.0
stack, lightweight and efficient and leveraging on modern computing
abilities (memory oriented vs. IO oriented).
This Big Data 2.0 software stack is much more efficient and effective than
any hadoop based Big Data processing cluster, while covering an extended
subset of the same use cases.

In addition, in contrary to hadoop these software components behave just as
good on a single node machine with plenty of RAM and processor than it
does on a cluster of a few small nodes, thanks to their ability of benefiting
from the multi-processor architecture of modern machines.
In addition, this comes with an interesting benefit : the ability to build on
one’s machine the very same environment than on a large production
cluster.
One ring to Rule them all

Making docker, gluster, elasticsearch, kafka, spark, flink, zeppelin, etc. all
work perfectly and 100% together is very tedious and difficult.

Eskimo takes care of everything and fine-tunes all these services to make
them understand each other and work together.

Eskimo enables you one-click administration of all of them, moving services,
provisioning nodes, etc.

Yet it’s open : open-source and built on standards



One size fits all

Do you want to build a production grade Big Data Processing cluster with
thousands of nodes to analyze the internet ?

Or do you want to build a small AI laboratory on your own laptop ?

Eskimo is made for you in these both cases.
Lightweight in DNA

MapR, Hortonworks, Cloudera and every other hadoop based Big Data
Platforms are Behemoths.

Eskimo leverages on GlusterFS, Kubernetes, spark, flink, elasticsearch,
logstash, kibana, Zeppelin, etc. - simple and extremely lightweight
components that have a broad use cases coverage while simplifying
administration, operation and usage.
Open platform extensible and customizable

Eskimo works out of the box, taking care of the burden to make all this
software works perfectly and 100% together.

Eskimo is not a black box, it’s an open platform. One can fine tune and adapt
everything exactly as desired : from the docker containers building to the
services setup on the platform.

Want to leverage on eskimo to integrate other services such as Apache Flink
or Cassandra ? declare your own services and import your own containers,
built it as you like !
Universal Platform

Eskimo is exhaustively built on top of Docker.

Only kubernetes binaries are installed on host linux OS running your cluster
nodes.
All the other components - from kafka to zeppelin through spark - run on
docker (mostly - but not only - through Kubernetes).

Eskimo is successfully tested on Ubuntu, Debian, CentOS, Fedora and Red
Hat Enterprise Linux nodes so far … more are coming.
Enterprise-grade requirements

Eskimo is designed for Enterprise deployments, fulfilling enterprise-grade
requirements:

o Security from the grounds-up: data and communication encryption,
firewall, authentication and authorization on every action, etc.

o DRP compliance / Backup and restore tooling

o High-Availability out of the box

o State of the art Integration abilities

o Very broad range of use-cases and possibilities

(N.B. Eskimo comes in two flavours, the Enterprise Edition and the Community
Edition. Eskimo CE - Community Edition - supports only a subset of the
features above.)



Cloud Friendly

Build your own Big Data Cloud

Eskimo is VM friendly.
You have a bunch of VMs somewhere on Amazon or google cloud?
Make it a state of the art big data cluster, your way, not amazon or google’s
predefined, fixed and constraining way.

Choose your services and let eskimo take care of everything.

1.4. Eskimo Architecture

1.4.1. Technical Architecture
Eskimo’s technical architecture can be illustrated as follows:

Three components are available in the storage layer:

o ElasticSearch: a real-time, scalable, document-oriented and REST operated NoSQL
Database

o Gluster FS: the distributed filesystem in use with Eskimo along with EGMI to operare it.

o Apache Zookeeper: the distributed configuration, synchronization and orchestration system

The processing layer makes the following services available:

o Apache Kafka : used for real-time data integration and streaming processing

o Apache Spark : the large scale very versatile computation engine

o Apache Flink : a distributed processing engine for real-time and streaming stateful
computations over data stream

o Elastic Logstash : used for data ingestion, processing and dispatching

o As a sidenote, ElasticSearch can also be considered part of the processing tier since it
provides many processing abilities (pipeline computations, aggregations, etc.)

All Big Data / NoSQL middlewares as well as all User Interface (UI) Applications are operated
by Kubernetes to achieve optimal cluster resources booking and negotiation.

The user layer is intended for data / result visualizations and platform administration with the
following components:

o Elastic Kibana, Grafana and Apache Zeppelin for data and result visualizations

- Grafana is also used natively for platform monitoring concerns



o Cerebro, The Spark Console (History Server), The Flink Dashboard, the Kafka Manager, the
Kubernetes Dashboard for platform administration.

Each and every software components is executed with Docker and packaged as a docker
container. Runtime operation is ensured using Kubernetes for most services and some static
services are handled with SystemD directly and defined as SystemD units.

1.4.2. Typical Application architecture
A typical Eskimo application architecture can be illustrated as follows:

The above schema illustrates typical data flows within Eskimo

1.4.3. Sample System Architecture
This is an example of a possible deployment of Eskimo on a 6 nodes cluster:

The Eskimo application itself can be deployed on any of the cluster nodes or on another,
separated machine (as in the example above),

Requirements on machines to be used as Eskimo Cluster nodes are presented in the following
sections:

o Prerequisites on eskimo cluster nodes

o Required packages installation and Internet access on cluster nodes

1.5. Eskimo building



Eskimo build instructions are given in the file README.adoc located in the root folder of the
eskimo source code distribution.



Chapter 2. Eskimo Installation



Eskimo cluster nodes support only the Linux operating system and have to be running a
supported Linux distribution (See Prerequisites on eskimo cluster nodes).
The eskimo application itself can very well run on windows though. However, running
the Eskimo application on Windows prevents the user from building his own packages /
container images. When running the eskimo backend on Windows, it’s only possible to
download pre-built service container images from https://www.eskimo.sh.

2.1. Installation target
The eskimo backend itself can either be installed:

o on one of the nodes from the eskimo cluster (anyone of them).
Doing so is however not recommended since that node would need to have the HTTP port
on which Eskimo is listening opened to external accesses (which is against eskimo’s
philosophy) and in addition Eskimo would eat some of the resources (RAM and disk) that
would be better left to the business services.

o or on a dedicated node where only the eskimo backend runs (i.e. separated from the Eskimo
cluster nodes). This is the recommended approach.

2.1.1. Local Eskimo installation
Eskimo can also be used as a local Data Science laboratory, in which case the Eskimo backend
is installed on the local user machine as well as all eskimo services. This is perfectly possible
with Eskimo. In such case Eskimo wouldn’t be targeted towards large scale Big Data Analytics,
but rather local Data Science experimentation or prototyping, make the user benefit from the
Eskimo pre-packaged services (ElasticSearch, Spark, Flink, etc.)

Installing Eskimo on the local user machine is however tricky.
Eskimo does require indeed an IP address to identify the target node where eskimo services are
to be installed.
A first idea one might have in this case is to use 127.0.0.1 (localhost) as single node target IP
to proceed with the installation. Unfortunately, this doesn’t work as 127.0.0.1 resolves to different
loopback interfaces in the various docker containers running eskimo services and as a
consequence eskimo services are not able to reach each others when 127.0.0.1 is used as
installation target.

So something else needs to be found as target IP address.

The best approach is to use the external interface IP address since in every possible
configuration, this IP address will be made available from within Kubernetes PODs and native
docker containers, just as services running on hosts themselves.

2.1.2. Installing eskimo on Windows.
As stated in introduction, the eskimo backend can run on Microsoft Windows but in this case it’s
only possible to download service container images from https://www.eskimo.sh. Building
one’s own container images locally is not possible.

In addition, a property in the configuration file eskimo.properties needs to be adapted to a
Windows environment, the properly that configures the path to the user definition file:
security.userJsonFile=/var/lib/eskimo/eskimo-users.json

needs to be changed to a folder existing on Windows and where the user running Eskimop has

https://www.eskimo.sh
https://www.eskimo.sh


_write_access rights, such as e.g.
security.userJsonFile=c:/Windows/Temp/eskimo-users.json

2.2. Prerequisites
Some noteworthy elements need to be bore in mind regarding eskimo prerequisites.

2.2.1. Java 11 or greater
Eskimo needs Java 11 or greater to run.

In addition, one needs to have either java in the path or the JAVA_HOME environment variable
properly set in prior to starting eskimo with the provided startup scripts.

Use for instance the following commands on Linux:
Put java in PATH on Linux

export JAVA_HOME=/usr/local/lib/jdk-11 # or wherever it's installed

export PATH=$JAVA_HOME/bin:$PATH

(One might want to put the commands above in ones’s /etc/profile or /etc/bash.bashrc)

Use for instance the following commands on Windows:
Put java in PATH on Windows

set JAVA_HOME=C:\programs\jdk-11 # or wherever it's installed

set PATH=%JAVA_HOME%\bin;%PATH%

(On Windows, one might want to define these as System Variables: Right-click on "My
Computer", choose "Properties", then "Advanced System Settings", then "Environment Variables"
and finally add or update the variables above as "System Variables")

2.2.2. System requirements
In order to run eskimo, one needs to have

o At least 25Gb of disk storage space on the machine running Eskimo

o At least one linux machine available on the network and reachable from the machine
running Eskimo (it can actually be the same machine than the one running Eskimo) that will
be put in the eskimo cluster and manipulated by eskimo.
See next section regarding requirements for the machines in the eskimo cluster.

Eskimo is reached using a web browser (see startup logs). Supported web browsers are:

o Microsoft Edge 14 or greater

o Mozilla FireFox 54 or greater

o Google Chrome 58 or greater

Note: there may be other browsers / versions supported (Safari, Opera, etc.) but they are not
certified to work with Eskimo.

2.2.3. Network requirements
Network requirements with Eskimo are as follows:

o 100MB ethernet minimum between client machines (accessing eskimo cluster services
through web browser) and the machine running the Eskimo backend (Gigabit ethernet
recommended).

In case of cluster deployment:



o Gigabit ethernet between the machine running the Eskimo backend and Eskimo cluster
nodes

o Gigabit ethernet required in between cluster nodes

2.2.4. Prerequisites on eskimo cluster nodes
Linux’s distributions successfully tested for usage as Eskimo cluster nodes and officially
supported are the following:

o Debian Bullseye and greater

o Ubuntu Focal and greater

o CentOS 7.x and 8.x, CentOS stream 8

o RHEL 8.2 and greater

o Fedora 35 or greater

Other Debian-based or Red-Hat-based distributions could be supported as well but haven’t
been tested so far and may require the administrator to adapt the setup scripts located in
services_setup.

Minimum hardware
The minimum hardware capacity requirements to run eskimo are as follows:

Multiple Nodes in the Eskimo cluster, minimum requirement for one node

In cases where the eskimo cluster runs on multiples nodes (two or more nodes), the minimum
hardware capacity for each these nodes is as follows:

o 30 GB HDD storage space for the system

- additional storage space depending on the data to be manipulated and the replication
factor.

- also at least 8Gb disk storage available on /tmp if it’s a specific partition.

o 4 CPUs (8 CPUs recommended)

o 16 GB RAM (32 GB RAM recommended)

Single Machine Eskimo deployment, minimum requirement for the single node

In cases where Eskimo is deployed on a single node (such as the host node running Eskimo
itself), the minimum hardware capacity for this node is as follows:

o 30 GB HDD storage space for the system

- additional storage space depending on the data to be manipulated and the replication
factor.

- also at least 8Gb disk storage available on /tmp if it’s a specific partition.

o 8 CPUs (16 CPUs recommended)

o 32 GB RAM (64 GB RAM recommended)

2.2.5. Required packages installation and Internet access on cluster nodes
Eskimo performs some initial setup operations on every node of the cluster it needs to operate.
Some of these operations would require Internet access to download dependencies (either
RPM or DEB packages) if these are not properly installed in advance by administrators.

In case it is not possible to give access to internet to the nodes in the cluster one wants to
operate using eskimo, one will find below the yum and apt commands used during nodes



setup.
In case internet access from cluster node is not possible, one can reproduce these
commands on one’s environment to find out about the packages that need to be installed in
prior to have eskimo operating your cluster nodes:

Following commands are executed on a debian-based node:
debian based node setup

export LINUX_DISTRIBUTION=`\

    awk -F= '/^NAME/{print $2}' /etc/os-release \

    | cut -d ' ' -f 1 \

    | tr -d \" \

    | tr '[:upper:]' '[:lower:]'`

# system update

apt-get -yq update

# docker dependencies

apt-get -yq install apt-transport-https ca-certificates curl software-properties-common

apt-get -yq install gnupg-agent gnupg2

# docker installation

curl -fsSL https://download.docker.com/linux/$LINUX_DISTRIBUTION/gpg | sudo apt-key add

add-apt-repository deb [arch=amd64] https://download.docker.com/linux/$LINUX_DISTRIBUTION

$(lsb_release -cs) stable

apt-get -yq update

apt-get -yq install docker-ce docker-ce-cli containerd.io

# other dependencies

apt-get -y install ipset binutils net-tools attr socat dnsmasq gettext-base iputils-ping

# glusterfs client

apt-get -y install glusterfs-client

Following commands are executed on a redhat-based node:
redhat based node setup

export LINUX_DISTRIBUTION=`\

    awk -F= '/^NAME/{print $2}' /etc/os-release \

    | cut -d ' ' -f 1 \

    | tr -d \" \

    | tr '[:upper:]' '[:lower:]'`

# system update

sudo yum -y update

# docker dependencies

yum install -y yum-utils device-mapper-persistent-data lvm2

# docker installation

yum-config-manager --add-repo

https://download.docker.com/linux/$LINUX_DISTRIBUTION/docker-ce.repo

yum install -y docker-ce docker-ce-cli containerd.io

# other dependencies

yum install -y ipset binutils net-tools anacron socat dnsmasq gettext iputils

# glusterfs client

yum -y install glusterfs glusterfs-fuse

Following commands are executed on a SUSE node:



suse node setup

# system update

sudo zypper --non-interactive refresh | echo 'a'

# install docker

sudo zypper install -y docker

# other dependencies

sudo zypper install -y ipset binutils net-tools cron sysvinit-tools socat dnsmasq iputils

# glusterfs client

sudo zypper install -y glusterfs

Again, if eskimo cluster nodes have no internet access in your setup, you need to install all
the corresponding packages (those listed above and their transitive dependencies) before you
can use these machines as eskimo cluster nodes.

After this initial setup is performed (in a process named Eskimo base installation and
implemented by the script install-eskimo-base-system.sh), the eskimo installation is
performed entirely without any need to access internet.

Eskimo system user
Eskimo requires to have a system user properly defined and with SSH access to reach and
operate the cluster nodes. That user can be any user but it has to be configured in Eskimo - see
First run and initial setup - and has to have SSH access to every single node to be operated by
eskimo using SSH Public Key Authentication - see Setting up SSH Public Key Authentication.

In addition, that user needs to have sudo access (wildcard) without requiring to enter a
password! This sudo ability for the configured user is absolutely key.

On most systems, this means:

o Add the user configured with eskimo to the sudoers groups

o Add a file in /etc/sudoers.d/eskimo containing eskimo ALL=(ALL) NOPASSWD:ALL
(if eskimo is the configured user) `

Protecting eskimo nodes with a firewall
The different services operated by Eskimo require different set of ports to communicate with
each others. As such, internal cluster communications - all communications (ports) from an
eskimo cluster node to all the other eskimo cluster nodes - have to be whitelisted (opened)
from the firewall.

The cluster nodes should however protect themselves against external access - IP addresses
not belonging to the eskimo cluster nodes - by blocking pretty much every port except port 22,
which is the single port used by eskimo to reach eskimo cluster services.

IN ADDITION TO THE STATIC PORTS LISTED BELOW, A WHOLE SET OF PORT RANGES ARE
USED BY THE KUBERBNETES INFRASTRUCTURE, ELASTICSEARCH, SPARK EXECUTORS AND
FLINK WORKERS TO COMMUNICATE WITH EACH OTHER. THESE DYNAMIC PORTS ARE
CREATED ON THE FLY AND HAVING THEM CLOSED BY THE FIREWALL WOULD SIMPLY
PREVENT THEM FROM WORKING.

For this reason, whenever the eskimo cluster nodes are protected by a firewall, it is of
UTMOST IMPORTANCE that the firewall is filtering out the internal eskimo cluster nodes IP
addresses from the exclusion rules.
Every eskimo node should have wide access to every other node in the eskimo cluster.



Period.

Specifically on RHEL, firewalld in its default configuration (coming out of the box) is preventing
eskimo services from reaching each others and compromises Eskimo’s behaviour. It needs to
be properly configured and whitelist all communications (all ports) in between Eskimo cluster
nodes. Or just disable firewalld for a non-production critical deployment (sudo disable
firewalld and sudo stop firewalld).

On the opposite side, as far as external eskimo cluster communications are concerned, it is
important to filter out every single access attempt originating from outside the Eskimo cluster.
The only open port to be opened for requests outside of the eskimo cluster should be the port
22 used by SSH since all accesses from the Eskimo console to the cluster nodes happens
through SSH tunnels.

For the sake of information, the list of static ports used by the different services are listed here:

o [cerebro] : 9000, 31900

o [elasticsearch] : 9200, 9300

o [gluster] : 24007, 24008, 24009, 24010, 49152, 38465, 38466, 38467

o [grafana] : 3000, 31300

o [kafka] : 9092, 9093, 9999

o [kafka-manager] : 22080, 31220

o [kibana] : 5601, 31561

o [kubernetes] : 2379, 2380, 6443, 8091, 8472, 10250, 10251, 10252, 10255

o [ntp] 123

o [prometheus] : 9090, 9091, 9093, 9094, 9100

o [spark] : 7077, 8580, 8980, 8581, 8981, 2304, 18480, 7337, 7222, 8032, 7222

o [flink] : 6121, 6122, 6123, 6130, 8081

o [spark-console] : 18080, 31810

o [zeppelin] : 38080, 38081, 31008, 31009

o [zookeeper] : 2181, 2888, 3888

Again, this list is incomplete since it doesn’t reveal the dynamic port ranges mentioned above.

2.3. Extract archive and install Eskimo
After downloading either the zip ot the tarball archive of eskimo, it needs to be extracted on the
local filesystem. This simple extraction is the only step required to install eskimo.

Then in the folder bin under the newly extracted eskimo binary distribution folder, one can find
two scripts:

o a script eskimo.bat to execute eskimo on Windows

o a script eskimo.sh to execute eskimo on Linux.

That’s it.

2.3.1. SystemD Unit file Installation
In case one wants to have Eskimo’s backend operated (automatically started, etc.) using
SystemD, the script bin/utils/__install-eskimo-systemD-unit-file.sh can be used
to perform all the required setup steps for a successful SystemD launch as well as installing the
Eskimo SystemD unit configuration file.



2.3.2. Extracted Archive layout and purpose
Once extracted on the filesystem, the Eskimo folder contains the following elements:

o bin : contains executables required to start Eskimo as well as utility commands (in utils
sub-folder)

o conf : contains Eskimo configuration files

o lib : contains eskimo runtime binaries

o packages-dev : contains the Eskimo docker images (packages) development framework
which is used to build eskimo components / services docker images locally (this is not
required if the administrator decides to download packages from https://www.eskimo.sh)

o packages_distrib: contains eventually the eskimo services docker image packages
(either built locally or downloaded from internet)

o services_setup: contains the services installation framework. Each and every
customization an administrator wishes to apply on eskimo services is done by modifying
/ extending / customizing the shell scripts in this folder.

o static_images: is intended to be used to add additional icons or logos for new custom
managed services added by an administrator to Eskimo.

2.3.3. Utility commands
Some command line utilities to ease eskimo’s administration are provided in bin/utils:

o encode-password.bat|.sh : this script is used to generate the encoded password to be
stored in the user definition file. See Access eskimo

2.4. Access eskimo
With eskimo properly started using the scripts in bin discussed above, one can reach eskimo
using http://machine_ip:9191.
The default port number is 9191. This can be changed in configuration file
eskimo.properties.

The default login / password credentials are admin / password.

This login is configured in the file pointed to by the configuration property
security.userJsonFile.
A sample file is created automatically if the target file doesn’t exist with the admin login above.

The structure of this file is as follows;
Sample user definition file

{

  "users" : [

    {

      "username" : "admin",

      "password" : "$2a$10$W5pa6y.k95V27ABPd7eFqeqniTnpYqYOiGl75jJoXApG8SBEvERYO",

      "role": "ADMIN"

    }

  ]

}

The password is a BCrypt hash (11 rounds) of the actual password.

The administrator can add as many different users as required on the Eskimo platform to this
file.

Users can have either the ADMIN or USER role.

https://www.eskimo.sh
http://machine_ip:9191


o the ADMIN role enables full access to every single feature of Eskimo

o the USER role limits available functionalities to Data Science tools and prevents the user
from making any change to the cluster configuration or influence runtime operations.

2.5. First run and initial setup
Upon first run, eskimo needs to be setup before it can be used.

Right after its first start, one single screen is available : the setup page.
It is the only accessible page as long as initial setup is not properly completed and service
docker images (plus kubernetes packages) have not been either downloaded or built.

The setup page is as follows:

On the setup page, the user needs to input following information:

o Configuration Storage Path : a folder on the filesystem where the system user running
eskimo needs to have write access to. The dynamic configuration and state persistence of
eskimo will be stored in this location.

o SSH Username : the name of the SSH user eskimo has to use to access the cluster nodes.
Every node that needs to be managed by eskimo should have granted access using SSH
Public Key authentication to this user.

o SSH private key : the private key to use for SSH Public Key authentication for the above
user. See the next section presenting how to generate this key : Setting up SSH Public Key
Authentication

o Kube Origin : the user needs to choose whether Kubernetes package should be built
locally (on eskimo host node) or whether pre-built versions should be downloaded from the
remote packages repository (by default https://www.eskimo.sh).

o Docker Images Origin : the user needs to choose whether service package images needs to
be built locally or whether they need to be downloaded from the remote packages
repository (by default https://www.eskimo.sh).

Once the settings have been chosen by the administrator, clicking "Save and Apply Setup" will
launch the initial setup process and the archives will be built locally or downloaded. This can
take a few dozen of minutes depending on your internet connection and/or the eskimo host
machine processing abilities.

https://www.eskimo.sh
https://www.eskimo.sh


Regarding the SSH private key, the next section gives indications on how to build a public /
private key pair to enable eskimo to reach and manage the cluster nodes.

The the section "Setting up a remote packages repository" from the document "Service
Development Framework" presents the nuts and bolts required in setting up a remote packages
repository.
The remote repository URL is configured in eskimo.properties using the configuration
property : system.packagesDownloadUrlRoot : The root URL to download the packages
from.

2.5.1. Building packages locally
Building eskimo packages locally means building the services docker images on your local host
machine running eskimo. This means that instead of downloading docker images from the
eskimo repository, the user wants to build them on his own and only download the source
package archives from their respective software editor web site (e.g. Apache, Elastic, etc.)

Requirements
There are some important requirements when desiring to build the software packages on
one’s own:

o The host machine running eskimo needs at least 25 GB of free hard drive space

o The host machine running eskimo needs at least 16 GB of free RAM space available

In addition, building packages locally requires some tools to be available on the host machine
running eskimo itself. Mostly, git, docker and wget need to be installed on your host machine.

Instructions to install these tools
Following commands are required on a debian-based host:

debian host dependencies to build packages

export LINUX_DISTRIBUTION=`\

    awk -F= '/^NAME/{print $2}' /etc/os-release \

    | cut -d ' ' -f 1 \

    | tr -d \" \

    | tr '[:upper:]' '[:lower:]'`

# system update

apt-get -yq update

# eskimo dependencies

apt-get -yq install wget git

# docker dependencies

apt-get -yq install apt-transport-https ca-certificates curl software-properties-common

apt-get -yq install gnupg-agent gnupg2

# docker installation

curl -fsSL https://download.docker.com/linux/$LINUX_DISTRIBUTION/gpg | sudo apt-key add

add-apt-repository deb [arch=amd64] https://download.docker.com/linux/$LINUX_DISTRIBUTION

$(lsb_release -cs) stable

apt-get -yq update

apt-get -yq install docker-ce docker-ce-cli containerd.io

# Enable and start docker

systemctl enable docker

systemctl start docker



# Add current user to docker group

usermod -a -G docker $USER

# (system or at least shell / process restart required after this)

Following commands are required on a redhat-based host:
redhat host dependencies to build packages

export LINUX_DISTRIBUTION=`\

    awk -F= '/^NAME/{print $2}' /etc/os-release \

    | cut -d ' ' -f 1 \

    | tr -d \" \

    | tr '[:upper:]' '[:lower:]'`

# system update

yum -y update

# eskimo dependencies

yum install -y wget git

# docker dependencies

yum install -y yum-utils device-mapper-persistent-data lvm2

# docker installation

yum-config-manager --add-repo

https://download.docker.com/linux/$LINUX_DISTRIBUTION/docker-ce.repo

yum install -y docker-ce docker-ce-cli containerd.io

# Enable and start docker

systemctl enable docker

systemctl start docker

# Add current user to docker group

usermod -a -G docker $USER

# (system or at least shell / process restart required after this)

Following commands are required on a SUSE host:
suse host dependencies to build packages

# system update

zypper --non-interactive refresh | echo 'a'

# eskimo dependencies

zypper install -y git wget

# install docker

zypper install -y docker

# Enable and start docker

systemctl enable docker

systemctl start docker

# Add current user to docker group

usermod -a -G docker $USER

# (system or at least shell / process restart required after this)

2.5.2. Checking for updates
At any time after initial setup - and if and only if the chosen installation method is downloading
packages, the user can apply setup again to check on the packages server (by default
https://www.eskimo.sh) if updates are available for service docker images or kubernetes

https://www.eskimo.sh


packages.

2.6. Typical startup issues
Several issues can happen upon first eskimo startup.
This section describes common issues and ways to resolve them.

2.6.1. eskimo-users.json cannot be written
If you meet an error as the following one upon startup:

Impossible to write eskimo-users.json

Caused by: ch.niceideas.common.utils.FileException: ./eskimo-users.json (Unauthorized

access)

        at ch.niceideas.common.utils.FileUtils.writeFile(FileUtils.java:154)

        at

ch.niceideas.eskimo.security.JSONBackedUserDetailsManager.<init>(JSONBackedUserDetailsMana

ger.java:81)

        at

ch.niceideas.eskimo.configurations.WebSecurityConfiguration.userDetailsService(WebSecurity

Configuration.java:127)

        ... 50 more

Caused by: java.io.FileNotFoundException: ./eskimo-users.json (Unauthorized access)

        at java.base/java.io.FileOutputStream.open0(Native Method)

        at java.base/java.io.FileOutputStream.open(FileOutputStream.java:276)

        at java.base/java.io.FileOutputStream.<init>(FileOutputStream.java:220)

        at java.base/java.io.FileOutputStream.<init>(FileOutputStream.java:170)

        at java.base/java.io.FileWriter.<init>(FileWriter.java:90)

        at ch.niceideas.common.utils.FileUtils.writeFile(FileUtils.java:149)

        ... 52 more

Eskimo uses a local file to define users and access credentials. Upon first startup, if that file
doesn’t exist already, it is created by eskimo (with the default credentials above) at the path
pointed to by the property security.userJsonFile in eskimo.properties.

If you experience the error above or something alike, change that property to point to a location
where the first version of the file can successfully be created.

2.7. Setting up SSH Public Key Authentication

2.7.1. Introduction
Public key authentication is a way of logging into an SSH/SFTP account using a cryptographic
key rather than a password. This is a strong requirement in the current version of eskimo.

2.7.2. How Public Key Authentication Works
Keys come in pairs of a public key and a private key. Each key pair is unique, and the two keys
work together.

These two keys have a very special and beautiful mathematical property: if you have the private
key, you can prove your identify and authenticate without showing it, by using it to sign some
information in a way that only your private key can do.

Public key authentication works like this:

1. Generate a key pair.

2. Give someone (or a server) the public key.

3. Later, anytime you want to authenticate, the person (or the server) asks you to prove you
have the private key that corresponds to the public key.



4. You prove you have the private key.

5. You don’t have to do the math or implement the key exchange yourself. The SSH server and
client programs take care of this for you.

2.7.3. Generate an SSH Key Pair
You should generate your key pair on your laptop, not on your server. All Mac and Linux
systems include a command called ssh-keygen that will generate a new key pair.

If you’re using Windows, you can generate the keys on your server. Just remember to copy
your keys to your laptop and delete your private key from the server after you’ve generated it.

To generate an SSH key pair, run the command ssh-keygen.
Calling ssh-keygen

eskimo@notebook:/tmp$ ssh-keygen

Generating public/private rsa key pair.

You’ll be prompted to choose the location to store the keys. The default location is good unless
you already have a key. Press Enter to choose the default location unless you already have a
key pair there in which case you might want to take great care not to overwrite it.

Enter file in which to save the key (/home/eskimo/.ssh/id_rsa): /tmp/eskimo/id_rsa

Next, you’ll be asked to choose a password. Using a password means a password will be
required to use the private key. Eskimo requires at all cost that you leave the password
empty otherwise the key won’t be usable with eskimo - at least in this current version.
Press two times "Enter" there :

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

After that, your public and private keys will be generated. There will be two different files. The
one named id_rsa is your private key. The one named id_rsa.pub is your public key.

Your identification has been saved in /tmp/eskimo/id_rsa.

Your public key has been saved in /tmp/eskimo/id_rsa.pub.

You’ll also be shown a fingerprint and "visual fingerprint" of your key. You do not need to save
these.

The key fingerprint is:

SHA256:/HPC91ROJtCQ6Q5FBdsqyPyppzU8xScfUThLj+3OKuw eskimo@notebook

The key's randomart image is:

+---[RSA 2048]----+

|           .+=...|

|            +=+. |

|           oo.+* |

|       + ....oo.o|

|        S .o= +.+|

|         = +.+ B.|

|          %.o oo.|

|         o.Boo  o|

|        oo .E.o. |

+----[SHA256]-----+

2.7.4. Configure an SSH/SFTP User for Your Key

Method 1: Using ssh-copy-id
Now that you have an SSH key pair, you’re ready to configure your app’s system user so you
can SSH or SFTP in using your private key.



To copy your public key to your server, run the following command. Be sure to replace “x.x.x.x”
with your server’s IP address and SYSUSER with the name of the the system user your app
belongs to.

ssh-copy-id SYSUSER@x.x.x.x

Method 2: Manual Configuration
If you don’t have the ssh-copy-id command (for instance, if you are using Windows), you can
instead SSH in to your server and manually create the ~/.ssh/authorized_keys file so it
contains your public key.

First, run the following commands to update the file with the correct permissions.

(umask 077 && test -d ~/.ssh || mkdir ~/.ssh)

(umask 077 && touch ~/.ssh/authorized_keys)

Next, edit the file .ssh/authorized_keys using your preferred editor. Copy and paste your
id_rsa.pub file into the file.

2.7.5. Log In Using Your Private Key
You can now SSH or SFTP into your server using your private key. From the command line, you
can use:

ssh SYSUSER@x.x.x.x

If you didn’t create your key in the default location, you’ll need to specify the location:

ssh -i ~/.ssh/custom_key_name SYSUSER@x.x.x.x

If you’re using a Windows SSH client, such as PuTTy, look in the configuration settings to
specify the path to your private key.

2.7.6. Granting Access to Multiple Keys
The ~/.ssh/authorized_keys file you created above uses a very simple format: it can
contain many keys as long as you put one key on each line in the file.

If you have multiple keys (for example, one on each of your laptops) or multiple developers you
need to grant access to, just follow the same instructions above using ssh-copy-id or manually
editing the file to paste in additional keys, one on each line.

When you’re done, the .ssh/authorized_keys file will look something like this (don’t copy
this, use your own public keys):

ssh-rsa

AAAAB3NzaC1yc2EAAAADAQABAAABAQDSkT3A1j89RT/540ghIMHXIVwNlAEM3WtmqVG7YN/wYwtsJ8iCszg4/lXQsf

LFxYmEVe8L9atgtMGCi5QdYPl4X/c+5YxFfm88Yjfx+2xEgUdOr864eaI22yaNMQ0AlyilmK+PcSyxKP4dzkf6B5Ns

w8lhfB5n9F5md6GHLLjOGuBbHYlesKJKnt2cMzzS90BdRk73qW6wJ+MCUWo+cyBFZVGOzrjJGEcHewOCbVs+IJWBFS

i6w1enbKGc+RY9KrnzeDKWWqzYnNofiHGVFAuMxrmZOasqlTIKiC2UK3RmLxZicWiQmPnpnjJRo7pL0oYM9r/sIWzD

6i2S9szDy6aZ eskimo@notebook

ssh-rsa

AAAAB3NzaC1yc2EAAAADAQABAAABAQCzlL9Wo8ywEFXSvMJ8FYmxP6HHHMDTyYAWwM3AOtsc96DcYVQIJ5VsydZf5/

4NWuq55MqnzdnGB2IfjQvOrW4JEn0cI5UFTvAG4PkfYZb00Hbvwho8JsSAwChvWU6IuhgiiUBofKSMMifKg+pEJ0dL

jks2GUcfxeBwbNnAgxsBvY6BCXRfezIddPlqyfWfnftqnafIFvuiRFB1DeeBr24kik/550MaieQpJ848+MgIeVCjko

4NPPLssJ/1jhGEHOTlGJpWKGDqQK+QBaOQZh7JB7ehTK+pwIFHbUaeAkr66iVYJuC05iA7ot9FZX8XGkxgmhlnaFHN

f0l8ynosanqt badtrash@desktop

2.7.7. Use the private key in eskimo
Once the above procedure properly followed and the public keys added to the authorized key
for your the user to be used by eskimo, you can use the corresponding private key in the



eskimo setup page to grand access to eskimo to the cluster nodes.



Chapter 3. Setting up the eskimo cluster
Right after the initial setup (menu entry "Setup") presented in the previous chapter. The
administrator can start setting up and installing the Eskimo Big Data Analytics cluster.

The process is the following:

1. Service settings configuration. Fine tune the settings for the services about to be installed
on the Eskimo cluster

2. Nodes and native services layout configuration : Declare the IP addresses of the Eskimo
cluster nodes nodes to be installed and operated by eskimo and select the native services
(as opposed to Kubernetes) that should run on these nodes

3. Kubernetes services selection : Pick up the Kubernetes services to be deployed on the
cluster

3.1. Services settings configuration
The most essential settings for all eskimo pre-packaged services are set automatically in such a
way that the nominal analytics use cases of an eskimo cluster work out of the box.

However, for many specific use cases, the default values for these settings as handled by
Eskimo are not satisfactory.
For this reason, Eskimo CE embeds a settings editor enabling administrators to fine tune
runtime settings for eskimo embedded services.

The service settings editor is available from the menu under "Configured Services", third menu
entry under "Platform Administration".

For every service, administrators have access to supported configuration files and supported
settings.
The default values enforced by eskimo right after installation are indicated.

3.2. Nodes and native services layout configuration
The fourth menu entry under "Platform Administration" leads to an essential part of the Eskimo
Administration console: it provides the system administrators / Eskimo Users with a way to
deploy the eskimo managed node native services on the eskimo cluster nodes.



Eskimo native services are docker containers managed (started / stopped / monitored / etc.)
by SystemD. Native services are operated by SystemD directly on the nodes, while Kubernetes
services are operated, well, through kubernetes.

Kubernetes itself is not a docker service but installed natively on nodes in this phase of the
installation process as well.

Setting up a native service on the eskimo cluster usually boils down to these 2 steps:

o Adding nodes to the eskimo cluster - using the Add Node button or ranges of nodes using
the Add Range button.

o Selecting the services that should be deployed and operated and the configured nodes.

Below is an example of a tiny cluster with four nodes setup:

Whenever nodes share the same configuration, they can be defined as a range of IP addresses
instead of defining each and every one of them, thus simplifying the configuration as explained
in the next section.

3.2.1. Adding nodes to the eskimo cluster
Whenever one wants to operate a cluster of a hundred of nodes with Eskimo, one doesn’t want
to have to define the hundred nodes one after the other. Not to mention that wouldn’t make any
sense since most nodes of that cluster would actually have the very same configuration (in
terms of node native services topology).

This is the rationality behind the notion of "Range of nodes"- The idea here is to be able to add a
single and unified configuration to all the nodes sharing the same configuration.

Single node configurations and range of nodes can be combined at will. Eskimo will however
refuse to apply configuration if the resolution of the various ranges and single nodes leads to an
IP address being defined several times.

Also, all nodes in a range are expected to be up and running and Eskimo will consider them so
and report errors if one node in a range is not answering.
Should you have holes in your range of IP addresses, you are expected to define multiple
ranges, getting rid of the holes in your range of IPs. This is fairly important if you want Eskimo
to be able to manage your cluster without errors popping up frequently.

 In its current version (0.5 at the time of writing this document), eskimo requires at all



cost nodes to be defined using IP addresses and in no way are hostnames or DNS
names supported. In this version of eskimo, only IP addresses are supported, period.
This is because unfortunately with big data technologies and especially spark and
kubernetes, supporting DNS or hostnames is significantly more complicated than direct
IP addresses lookup.
We are working on this and in a further version of eskimo will support working with
hostnames instead of IP addresses. But for the time being, administrators need to
configure eskimo using IP addresses and only IP addresses.

3.2.2. Deploying services
With all nodes from the cluster to be managed by eskimo properly identified (either as single
node or as part of a range of nodes), services can be configured and deployed.

3.2.3. Master services
Some services are considered master services and are identified on the services selection
window as unique services (understand services that can be deployed only once, e.g.
Zookeeper, the Kube Master, etc.) and configured using a radio button

These "Master services" - considered unique - can only be configured in single node
configuration and only once for the whole cluster:

3.2.4. Slave services
Some other services are considered slave services and can be deployed at will, on one single
or all nodes of the cluster (understand services that can be deployed multiple times, e.g. NTP,
GlusterFS, Kube Slave, etc.) and configured using a checkbox on the services selection window.

These "Slave Services" - considered multiple - can be configured at will.

3.2.5. Applying nodes configuration
Once all nodes are properly configured with their desired set of services, clicking on "Apply



Configuration" will initiate the Nodes Configuration process.

That setup process can be quite long on large clusters with plenty of nodes even though a lot
of tasks are performed in parallel.

One should note that this configuration can be changed at will! Master services can be
moved back and forth between nodes, slave services can be removed from nodes or added
at will after the initial configuration has been applied, Eskimo takes care of everything !

As a sidenote, Eskimo Community Edition doesn’t support high availability for master services,
one needs to acquire Eskimo Enterprise Edition for full high availability anf failover support.

Applying configuration is also useful when a service is reporting an error for instance such as
needing a restart or being reported as vanished.
In such cases a first step to resolve the problem is getting to the "Configure Eskimo Nodes"
screen and re-applying configuration.

Finally, whenever an installation or another operation fails, after fixing the problem (most of the
time correcting the service installation scripts in the service installation framework), the
installation or other operations can be recovered from where it failed by simply re-applying the
configuration here.

Applying nodes configuration is re-entrant / idempotent.

3.2.6. Forcing re-installation of a service.
The button "Force reinstall" enables the user to select services that will be reinstalled on every
node from the latest service docker image available.
Dependent services will be properly restarted.

3.3. Kubernetes Services Selection
The last step in the Eskimo cluster installation consists in deploying kubernetes services.

This is performed by the fifth menu entry under "Platform Administration" called "Config.
Kubernetes Services".

The process is actually very simple and one just needs to select the services to be installed and
operated automatically by Kubernetes, along with the CPU and RAM resource request to be
passed to Kubernetes and the replication / distribution strategy for multiple instances services.



Just as for native node host services, Eskimo provides a possibility to force the reinstallation of
Kubernetes services.
Just click on the "Force Reinstall" button and choose which services should be re-installed on
kubernetes.



Chapter 4. Eskimo User Guide
This chapter is the eskimo user guide and related to feature available to both administrators
and standard users.

4.1. The menu
The menu on the left is separated in two parts :

1. Eskimo Services : Eskimo services declaring a web console are automatically available from
within this menu. The web console is available in an iframe from within eskimo. Clicking
again on the menu entry while the web console is already displayed forced a refresh of the
iframe.

2. Platform Administration : This is where eskimo is configured, the layout of the services on
cluster nodes defined and the cluster monitored.

4.2. Eskimo System Status Screen
One of the most essential screen of the Eskimo Web Console, the one which is reach just after
login, is the System status screen.

This is an example of the status screen showing a three nodes cluster and the services installed
on this cluster.

On the example above, all services are in green, which indicates that they are working fine.

Services can be in:

o OK (Check) - green : the service is working alright

o OK (Check) - red) : the service is working alright although it needs to be restarted following
some dependencies updates or re-installation.

o OK (Check) - purple : the service is running but pending removal from the node.

o KO (Cross) - red: the service is reporting errors (down)

o NA (Question Mark) - red : the service is installed (and should be available) but cannot be
found on node

The user can choose between the node view (default) as above or the table view which is more
suited to monitor large clusters with hundreds of nodes.



4.2.1. Action Menu
When mouse-over'ing a service on a node in the table view, the user has access to the service
action menu which he can use to stop / start / restart a service or even force its full re-
installation.

In addition to these default commands, Eskimo Services can provide additional custom
commands made available to administrators and/or users in this action menu.

This is for instance the action menu when clicking on Zeppelin in the table view:

4.3. Acting on services reporting errors upon installation
Should you encounter an error upon Eskimo’s pre-packaged services installation, it most of the
time comes from some edge conditions that can happen once in a while (this is very rare).
Whenever that happens, a first step is to simply try to reapply the Nodes Services configuration -
See Applying nodes configuration - if the error happens again, then look at service installation
logs or SystemD logs.

The same applies to Kubernetes Services in which case one should attempt to re-apply the
Kubernetes Services Configuration - See Kubernetes Services Selection,

4.4. SSH and SFTP Client
The last and last but one menu entries in the "Eskimo Services" part are special consoles
implemented within eskimo to administer the cluster nodes.

4.4.1. SSH Terminal
The menu "SSH Terminals" gives access to SSH terminals to each and every node configured in
the eskimo cluster, just as a plain old SSH console, but from within your web browser.



As a design choice, the SSH Terminal doesn’t provide any toolbar but leverages on keyboard
shortcuts to perform most useful actions.

SSH Terminal shortcuts:

o Ctrl + Shift + Left : show terminal tab on the left

o Ctrl + Shift + Right : show terminal tab on the right

o Ctrl + Shift + C : Copy the currently selected text - Using Ctrl + Shift + C instead
of Ctrl + C since Ctrl + C is reserved for cancelling current / pending command

o Ctrl + V : Paste the clipboard content to the console - Here since Eskimo runs as a web
app, it is unfortunately obligatory to use Ctrl + V for pasting the clipboard due to browser
limitations (Only an event answering to Ctrl + V can access the clipboard)

Various notes related to Eskimo terminal console usage:

o The initial terminal size is computed automatically from the available window size.
Unfortunately in the current version, resizing the terminal is not supported. Whenever the
user resizes its Web Browser window, the only way to resize the terminal is by closing it and
reopening it.

o Shift + PgUp and Shift + PgDown to scroll the terminal is not supported. A sound usage
of | less is recommended when pagination is required.

4.4.2. SFTP File Manager
The Menu "SFTP File Manager" gives access to a web file manager which one can use to

o Browse the nodes filesystem

o Visualize text files stored on nodes

o Download binary file stored on nodes

o Upload files on nodes

o etc.



4.5. Services Web Consoles
Some services managed by eskimo are actually application with a Web Graphical User Interface
or Web Console in the Eskimo terminology.
If properly configured for it - See Eskimo Services Developer Guide - these web consoles are
detected as is and available from within Eskimo.

They are disposed in the menu under "Eskimo Services".

The pre-packaged web consoles with Eskimo are Zeppelin, EGMI, Kibana, Grafana, Cerebro,
Spark History Server, Flink App Manager, Kafka Manager and the Kubernetes Dashboard.

4.5.1. Demo Mode
Eskimo supports a Demo Mode which is in use for instance, on the DemoVM downloadable from
the eskimo web site.
The purpose of the Demo Mode is to be able to showcase all possibilities of Eskimo - including
administration features - while minimizing the runtime size and preventing users from breaking
eskimo.

In Demo Mode, following actions are blocked:

o Reinstalling a service

o Changing or re-applying nodes configuration

o Changing or re-applying kubernetes configuration

o Changing or re-applying setup configuration

Demo Mode is activated by changing the property eskimo.demoMode to true in the
configuration file eskimo.properties:

Configuration Property related to Demo Mode

# Whether to put eskimo in Demo Mode (true, false)

# The eskimo demo mode is used for the DemoVM. In demo mode, following restrictions apply:

# - Cannot change nodes config

# - Cannot change kubernetes config

# - Cannot re-install a service

eskimo.demoMode=false



4.5.2. The DemoVM
The Eskimo DemoVM downloadable from the eskimo web site. It is intended as a
demonstration of the features of the eskimo platform and enables users to test eskimo’s
possibilities and feel it’s administrator and user experience.

The Eskimo DemoVM is provided with Demo Mode enabled by default, with the limits explained
above (some actions are blocked).

In case a user wants to use the features that are disabled in Demo Mode, he needs to disable
Demo Mode.

Note: the "host only" interface IP address of the DemoVM needs to be 192.168.56.41. Eskimo
works by targetting cluster nodes using their IP addresses. In the case of the Demo VM, the
targe cluster node is the very same VM itself. In this case, Eskimo is using the IP address of its
own VM as installation target. So if the IP address of the DemoVM changes from
192.168.56.41 to anything else, Eskimo will interpret it as the target machine having
disappeared.

4.5.3. Deactivating Demo Mode on the demo VM
In order to deactivate Demo Mode, change the property eskimo.demoMode back to to false in
the confguration file eskimo.properties.

Unfortunately, this is not sufficient. The Eskimo DemoVM, for the sake of shortening it’s size,
doesn’t package the Eskimo Service Package Images, it just packages placeholders instead.
So these placeholders need to be removed and the actual Eskimo Service Package Images
need to be re-created or downloaded.

In order to do this, one should delete the content of the folder packages_distrib from the
Eskimo installation folder:

Delete packages_distrib content

# connect to your VM, then:

sudo rm -RF /usr/local/lib/eskimo-V0.3/packages_distrib/*

When this is done the Eskimo Web UI will automatically bring the user back to the setup page
and enable him to either build or download the Eskimo Service Package Images. Internet access
from the VM is required.

4.6. Docker images versioning
Every service deployed on the Eskimo Nods cluster by Eskimo takes a practical form of a
docker image instantiated in a docker container either through SystemD (for node native
services) or Kubernetes.

These Docker images are installed automatically either in the node local repo (for native
services) or in a Docker Registry (for kubernetes services).

Services can be customized and reinstalled at will and as frequently as required.
Eskimo manages version numbers as image tags automatically.
The first time a service is installed, the corresponding image will get version number "1" as tag,
the second time, it will get version "2", and so on.

This is explained in more detals in the Eskimo "Services Development Guide" (another document).



Chapter 5. Eskimo Architecture and Design Elements
This section presents various architecture and design elements of Eskimo.

5.1. SSH Tunelling
One of the most important features of Eskimo is the abilityof its Web Console to provide in a
single and unified Graphical User Interface all the underlying component administration
Consoles such as the Kubernetes Dashboard or the Kafka Manager, just as the essential Data
Science Applications such as Kibana and Zeppelin.

The Eskimo Frontend wraps these other web applicationss in its own User Interface and the
Eskimo backend proxies their HTTP data flows to their respective backend through SSH, in a
transparent and secured way.
The actual location of these software components (the runtime cluster node on which they are
actually executed) is only known by the eskimo backend (or kubernetes) and is handled
automatically.
Whenever such a console or service is moved from a node to another node (either manually or
automatically by Kubernetes), that is completely transparent to the end user.

Eskimo provides full abstraction of location on Managed Services, for both Kubernetes
services and node native services.

5.2. Security
This section presents different important aspects of the security principle within Eskimo.

5.3. Confidentiality and cluster protection
The key principle on which Eskimo leverages consists in protecting the cluster nodes from
external accesses.

Eskimo makes it so that each and every access to the eskimo cluster services are made through
Eskimo. It acts as a proxy between the external world and the eskimo cluster nodes (See SSH
Tunelling above).

When building eskimo cluster nodes, preparing for Eskimo’s installation, administrators should
ensure to leverage on iptables or firewalld to ensure:

o Only IP addresses within the Eskimo cluster nodes range or sub-network can have open and
wide access to the other Eskimo nodes.



o All external IP addresses (external to the eskimo cluster) should have access only to

- Port 22 for eskimo to be able to reach them - if the eskimo application itself is installed
outside of the eskimo cluster

- Port 80 of the node running eskimo - if the eskimo application itself is installed on one of
the eskimo cluster node (or the port on which Eskimo is configured to listen).

This principle is illustrated by the schema at Sample System Architecture.

When setting up Eskimo, administrators have to provide the SSH private key that Eskimo will
use to operate every node on the Eskimo cluster. It is of utmost importance to treat this key with
great confidentiality and to ensure it is only usable by the Eskimo system user.

5.3.1. Data Encryption
Eskimo recommends to encrypt filesystem partitions use for data storage, either at hardware
level if that is supported or at Operating System level.

Especially following folders or mount points have to be encrypted (depending on the services
being installed)

o /var/lib/gluster used for gluster bricks storage (and kafka, spark, etc. data in the
current eskimo version)

o /var/lib/elasticsearch used for elasticsearch data storage

It’s also possible within Eskimo to customize the ElasticSearch instances setup script to
leverage on ElasticSearch’s native data at rest encryption abilities.

5.3.2. User rights segregation and user imprersonation
A note on user impersonation and user rights segregation: Eskimo Community Edition doesn’t
support custom user rights segregation. All users within Eskimo Community Edition either have
the user role - in which case they have access to business console and a few utilities - or the
administrator role, who have full access to all Eskimo user and administration features.

If user rights segregation, authorizations enforcement and user impersonation are key concerns
for one’s enterprise environment, one should consider upgrading to Eskimo Enterprise Edition
which provides state of the art implementations of each and every Enterprise Grade
requirement.

5.4. High availability
Eskimo Community Edition provides only partial HA - High Availability - support.

Basically:

o Flink and Spark applications, leveraging on kubernetes, are natively Highly Available and
resilient to slave nodes vanishing.

o ElasticSearch as well is natively highly-available as long as the applications reaching it
support using multiple bootstrap nodes.

o All web consoles and administration applications leveraging on kubernetes (such as Kibana,
Zeppelin, Cerebro, the kafka-manager, etc. are natively available as well.

However in Eskimo Community Edition, some services are not highly-available and form single
point of failure forcing administrators to take manual actions when problems occur (service
crash or node vanishing).
These Single Point of Failure services - not highly available - are: Zookeeper and Kube-Master.



If full high-availability is an important requirement for one’s applications, then one should
consider upgrading to Eskimo Enterprise Edition which implements 100% high availability for
every components.



Chapter 6. Eskimo pre-Packaged services
In the current version, eskimo provides pre-packaged docker images as well as services setup
configurations for the pre-packaged software components.

Eskimo takes care of everything regarding the building of the docker images for these software
components as well their setup, installation and operation on the eskimo cluster nodes.

This chapter gives some additional information related to these software components operated
by eskimo, presents some design decisions regarding their operation as well as implementation
details of the Eskimo pre-packaged software components.

6.1. Eskimo services operation principles
Supported packaged services are defined at different levels in order to be operable by Eskimo:

1. They must be defined and configured in the configuration file services.json

2. They must have a setup.sh script in their services_setup folder.

3. (Optionally) they should have a docker image available containing the ready-to-run vanilla
software (if it’s a docker service)

4. (Optionally) they should have a SystemD unit file for Eskimo to be able to manage the
service through Systemd (for node native services)

5. (Optionally) they should have a Kubernetes deployment descriptor for Eskimo to be able to
manage the service through Kubernetes (for kubernetes services)

This is detailed in the Service Installation Framework Guide.

6.1.1. SystemD unit configuration files
Some services leverage on SystemD to be managed and operated by Eskimo (node native
services). Services themselves are implemented as docker containers.

This is how docker operations are mapped to systemctl commands :

o systemctl stop service: kills and removes the service docker container

o systemctl start service: creates and starts a new docker container from the reference
image

Since every restart of a service creates actually a new docker container, containers are
inherently not stateful and freshly restarted every time.
This is why the persistent data is stored under sub-folders of /var/lib which is mounted to
the docker container.

6.1.2. Kubernetes Deployment descriptors
But most services are Kubernetes services instead of node native (SystemD) services.

They can be managed using the Kubernetes Dashboard - which is prepackaged with Eskimo -
or with the help of the kubectl command.

Eskimo provided services have kubernetes deployment descriptor generation scripts placed in
/var/lib/eskimo/kube-services/ by eskimo.

6.1.3. Commands wrappers for kafka, logstash, spark and flink
Since software components and services within Eskimo are packaged as docker images,
command line tools such as kafka’s create-producer.sh or spark’s spark-submit work only
from within the respective kafka or spark executor docker container.

https://www.eskimo.sh/doc/service-dev-guide.html#services_installation_framework


For this reason, eskimo provides for each of these command line tools a host-level wrapper in
/usr/local/bin and /usr/local/sbin.
These wrappers take care of starting the required docker container and calling the
corresponding command in it.

Even further, since most analytics services within Eskimo run on Kubernetes, these wrappers
take care of tampering at startup with the container /etc/hosts file to dynamically resolve
each and every service deployed on Kubernetes based on the Kube topology at command
invocation time.

6.1.4. A specific generic wrapper
A specific generic shell wrapper is available in the form of the eskimo-kube-exec command
located in /usr/local/bin.

This wrapper can be used to invoke a shell for instance with access to all Kubernetes services
by their names with the following command call: eskimo-kube-exec bash.
This wrapper uses a generic container with a bunch of command line utilities available and is
deployed with the kube-shell kubernetes service.

6.1.5. Reloading a Service UI IFrame
Master services that have a web console and other UI applications are wrapped and shown
from within the Eskimo UI, in a consistent and coherent fashion, without the user needing to
reach anything else that the Eskimo UI to access all services and features of an Eskimo cluster.

These wrapped UI applications are displayed as iframes in the Eskimo main UI window.

Whenever a service UI is being displayed by selecting the service from the menu, clicking the
service menu entry a second time will force refresh the service iframe.

Now the remaining of this chapter presents each and every pre-packaged service:

6.2. NTP
NTP - Network Time Protocol - is used within Eskimo to synchronize all node clocks on the
eskimo cluster.

Eskimo elects one of the NTP node as master.
The master synchronizes its time from internet servers (if available) and all other NTP nodes are
considered slaves and synchronize their own clock from this NTP master.

NTP on Eskimo is installed as a host native service (SystemD / docker unit) and doesn’t run on
Kubernetes.

6.3. Zookeeper

Zookeeper is a distributed configuration and election tool used to synchronize kafka and EGMI
nodes and processes.

It is an effort to develop and maintain an open-source server which enables highly reliable
distributed coordination.

ZooKeeper is a centralized service for maintaining configuration information, naming, providing
distributed synchronization, and providing group services. All of these kinds of services are used
in some form or another by distributed applications.



https://zookeeper.apache.org/

Zookeeper on Eskimo is installed as a host native service (SystemD / docker unit) and doesn’t
run on Kubernetes.

6.3.1. Zookeeper specificities within Eskimo
The script zkCli.sh enabling an administrator to browse, query and manipulate zookeeper is
available on the host running the zookeeper container as
/usr/local/bin/zookeeperCli.sh

6.4. GlusterFS

Gluster is a free and open source software scalable network filesystem.
It’s suitable for data-intensive tasks such as cloud storage and media streaming. GlusterFS is
free and open source software and can utilize common off-the-shelf hardware.

GlusterFS is the standard distributed filesystem used within eskimo. It is used to store business
data and share data and configuration among eskimo cluster nodes.

https://www.gluster.org/

GlusterFS on Eskimo is installed as a host native service (SystemD / docker unit) and doesn’t
run on Kubernetes. It is used by Kubernetes itself to store its shared configuration.

6.4.1. Gluster Infrastructure
Eskimo approaches gluster shares management in a specific way.

First Gluster runs from within a docker container and is isolated from the host operating system.
Then Eskimo leverages on EGMI - Eskimo Gluster Management Interface - https://github.com/
eskimo-sh/egmi - to manage and operate the cluster of gluster nodes.

The architecture can be depicted as follows:

EGMI is a daemon running on machines or containers alongside Gluster FS and taking care of
managing gluster volumes and peers automatically (for most common operations).

The fundamental idea behind EGMI is that Big Data System administrators should not have to
do so much manual operations to build and maintain a gluster cluster with its volumes and
peers.

https://zookeeper.apache.org/
https://www.gluster.org/
https://github.com/eskimo-sh/egmi
https://github.com/eskimo-sh/egmi


EGMI inspires from the way most widely used Big Data / NoSQL backends manage their nodes,
shards and replicas transparently, balancing new replicas to new nodes automatically
whenever a node goes down, etc. without an administrator needing to really worry about it.
EGMI aims eventually at bringing the same level of automation and reliability on top of Gluster
FS and at simplifying most trivial aspects of gluster volumes management and repairing.

EGMI also includes a web interface for monitoring and to help administrators perform some
simple manual operations and configuration.

Please refer to the EGMI page on github linked above for further informmation about EGMI.

Noteworthy details:

o EGMI within Eskimo requires all gluster shares used by Eskimo services to be configured in
the property target.volumes of the configuration file (part) egmi.properties in the
Eskimo services configuration file services.json. Refer to the services development
guide for an exaplanation on that file.

6.4.2. Gluster mounts management
Gluster shares are mounted at runtime using standard mount command (fuse filesystem).

However eskimo provides Toolbox script that takes care of all the burden of mountint shared
folders with gluster.

This Toolbox script is the available on cluster nodes at: /usr/local/sbin/gluster-
mount.sh.
This script is called as follows:

calling /usr/local/sbin/gluster-mount.sh

/usr/local/sbin/gluster-mount.sh VOLUME_NAME MOUNT_POINT OWNER_USER_ID

where:

o VOLUME_NAME is the name of the volume to be created in the gluster cluster

o MOUNT_POINT is the folder where to mount that volume on the local filesystem.

o OWNER_USER_ID the user to which the mount points should belong

The beauty of this script is that it takes care of everything, from manipulating /etc/fstab to
configuring SystemD automount properly, etc.

This script is related to the mount part (the client part) on hosts OSes running on the Eskimo
cluster. A similar script is provided to run from within container to mount gluster shares from
within containers (as required for instance for kubernetes operated services) :
inContainerMountGluster.sh.
EGMI takes care of the GlusterFS backend management part.

6.4.3. Gluster specificities within Eskimo
Some notes regarding gluster usage within Eskimo:

o Eskimo’s pre-packaged services leverage on gluster for their data share need between
services running on different cluster nodes. Gluster provides the abstraction of location of
the filesystem for services.

o Gluster mounts with fuse are pretty weak and not very tolerant to network issues. For this
reason a watchdog runs periodically that fixes gluster mounts that might have been
disconnected following a network cut or another network problem.



6.5. Kubernetes

Kubernetes is an open-source container orchestration system for automating software
deployment, scaling, and management.

Eskimo leverages on Kubernetes to distribute services and management consoles on the
Cluster nodes. Aside of some services required for Kubernetes itself - such as GlusterFS,
Zookeeper (used by EGMI actually) and ntp - all Eskimo services are now distributed by and
operated on Kubernetes.

Kubernetes requires etcd to store and manage its configuration and Eskimo takes care of
deploying etcd.
Eskimo also takes care of each and every bits and bytes of configuration related to Kubernetes.
Kubernetes is exposed to administrators but they are not forced to be aware of it. Eskimo
automates each and every task related to Kubernetes such as deploying services and PODs,
configuring endpoints, creating SSL certificates, etc. Eskimo also creates roles and users
required to operate Kubernetes services.

Eskimo also packages and manages etcd automatically as required by Kubernetes.
Etcd is a strongly consistent, distributed key-value store that provides a reliable way to store
data that needs to be accessed by a distributed system or cluster of machines. It gracefully
handles leader elections during network partitions and can tolerate machine failure, even in the
leader node.
Etcd within Eskimo CE suffers from some limitations related to node removal and addition post-
installation as described here etcd and node removal / re-installation after initial installation.

Eskimo separates Kubernetes components in two families :

o The Kube Master which packages

- The kube-apiserver

- The kube-controller-manager

- The kube-scheduler

- A Kube proxy process

o The Kube Slave which packages

- The kubelet

- The kube-router

https://kubernetes.io/

6.5.1. Kubernetes specificities within Eskimo
The Kube Master takes care of deploying the CoreDNS POD and package.

The Kube Router is used for networking, firewalling and proxying on eskimo cluster nodes.

Both the Kube Master packages and the Kube Slave package takes care of mounting the
gluster volume used to store the Kubernetes configuration to make it available to both master
and slave processes.

All kubernetes system Docker images such as CoreDNS, Pause, etc. are packaged by Eskimo
and deployed automatically.

Kubernetes services name resolution on host nodes

https://kubernetes.io/


As of current version of Eskimo (V0.5), no host-level DNS service is setup to provide service
name resolution for node / host level commands and components.

Eskimo provides in place a command eskimo-kube-exec which invokes the passed command
line within a container where kubernetes services are dynamically declared in /etc/hosts,
thus making them available for command line programs.

Kubernetes Dashboard
Eskimo packages and provides the Kubernetes Dashboard to monitor and administer
Kubernetes out of the box.

Eskimo takes care of login the user in the Kubernetes Dashboard automatically.
However, upon inactivity of the user, the session is lost frequently and fast. In this case, one will
see plenty of "401 - unauthorized" errors. Whenever this happens, the user simply needs to use
the upper-right icon to log out of the Kubernetes dashboard and Eskimo will take care of login
the user back in after a few seconds.

6.6. Elastic Logstash

Logstash is an open source, server-side data processing pipeline that ingests data from a
multitude of sources simultaneously, transforms it, and then sends it to your favorite "stash."

Logstash dynamically ingests, transforms, and ships your data regardless of format or
complexity. Derive structure from unstructured data with grok, decipher geo coordinates from
IP addresses, anonymize or exclude sensitive fields, and ease overall processing.

https://www.elastic.co/products/logstash

6.6.1. Logstash specificities within Eskimo
Whenever logstash is distributed as a docker container, and yet to be used from other
containers, such as Zeppelin, these containers can hardly (there are ways, but they are
cumbersome) instantiate logstash processes. This is solved within Eskimo by leveraging on a
command server and an always on container with the logstash software.

This command server is deployed as a Kubernetes StatefulSet in such a way that Kubernetes
schedules this container on Eskimo cluster node.
The command server in these containers takes care of invoking logstash processes with the
arguments passed to its API.

This works as follows:

1. First, the folder /var/lib/elasticsearch/logstash/data is shared between the host,
the zeppelin container and the logstash containers. As such,
/var/lib/elasticsearch/logstash/data can be used to pass data to logstash.
In a cluster environment, /var/lib/elasticsearch/logstash/data is shared among
cluster nodes using Gluster.

2. Eskimo provides a command /usr/local/bin/logstash-cli that acts as a command
line client to the logstash server container.
Whenever one calls logstash-cli, this client command invokes logstash in the logstash
container (potentially remotely on another node through kubernetes) and passes the
arguments is has been given to that logstash instance.

https://www.elastic.co/products/logstash


logstash-cli supports all logstash arguments which are passed through to the invoked
logstash instance within the logstash container.
In addition, it supports a non-standard argument that is specific to eskimo:

o -std_in /path/to/file which is used to pass the given file as STDIN to the invoked
logstash instance. This is unfortunately required since piping the STDIN of the logstash-cli
command to the remote logstash instance is not supported yet.

6.6.2. logstash-cli package
A specific package called logstash-cli packages the logstash-cli command presented
above and makes it available on nodes where it is installed.

In addition to the command server / logstash-cli couple, a logstash command wrapper is
provided that invokes logstash in an ad’hoc container created on the fly.

logstash-cli reaches the logstash instances by the kubernetes service name
logstash.eskimo.svc.cluster.eskimo.

6.6.3. Gluster shares for Logstash
Nodes where logstash is installed automatically have the following gluster share created and
mounted:

o /var/lib/elasticsearch/logstash/data which can be used to pass data to logstash
instances or retrieve data from logstash instances.

6.7. ElasticSearch

ElasticSearch is a document oriented real-time and distributed NoSQL database management
system.

It is a distributed, RESTful search and analytics engine capable of addressing a growing number
of use cases. As the heart of the Elastic Stack, it centrally stores your data so you can discover
the expected and uncover the unexpected.

Elasticsearch lets you perform and combine many types of searches — structured,
unstructured, geo, metric — any way you want. Start simple with one question and see where it
takes you.

https://www.elastic.co/products/elasticsearch

ElasticSearch is deployed as a Kubernetes StatefulSet in such a way that Kubernetes schedules
an ElasticSearch instance on every Eskimo cluster node.

Elasticsearch instances are available using the DNS hostname
elasticsearch.eskimo.svc.cluster.eskimo both within containers (PODs) running
through Kubernetes and within containers running natively on nodes.
Individual ES instances have specific names but the hostname above enables to reach anyone
of them in a random fashion (high availability),

6.8. Cerebro

https://www.elastic.co/products/elasticsearch


Cerebro is used to administer and monitor elasticsearch nodes and activities. It is an open
source elasticsearch web admin tool.

Monitoring the nodes here includes all indexes, all the data nodes, index size, total index size,
etc

https://github.com/lmenezes/cerebro

Cerebro is deployed in Kubernetes as a deployment, ensuring it’s availability on another node
when the former node running it goes down.

6.9. Elastic Kibana

Kibana lets you visualize your Elasticsearch data and navigate the Elastic Stack so you can do
anything from tracking query load to understanding the way requests flow through your apps.

Kibana gives you the freedom to select the way you give shape to your data. And you don’t
always have to know what you’re looking for. With its interactive visualizations, start with one
question and see where it leads you.

https://www.elastic.co/products/kibana

Kibana is deployed in Kubernetes as a deployment, ensuring it’s availability on another node
when the former node running it goes down.

6.9.1. Kibana specificities within Eskimo
Eskimo is able to provision Kibana dashboards and referenced objects automatically at
installation time.

o dashboards and all references objects exports need to be put under
services_setup/kibana/samples/ such as e.g. samples/berka-
transactions.ndjson

o These Kibana export archives need to be self-contained : every direct or indirect object
referenced by a dashboard such as obviously visualizations, saved searches, index patterns,
etc. need to be selected when creating the extract.

6.9.2. Pre-packaged Kibana Dashboards
In addition to the Kibana native samples distributed along Kibana, Eskimo provisions a sample
Dashboard for Berka transactions used in Zeppelin sample notes.

6.10. Apache Kafka

Kafka is a distributed and low-latency data distribution and processing framework. It is a
distributed Streaming platform.

Kafka is used for building real-time data pipelines and streaming apps. It is horizontally scalable,
fault-tolerant, wicked fast, and runs in production in thousands of companies.

https://kafka.apache.org/

Kafka is deployed as a Kubernetes StatefulSet in such a way that Kubernetes schedules Kafka
instances every Eskimo cluster nodes.

https://github.com/lmenezes/cerebro
https://www.elastic.co/products/kibana
https://kafka.apache.org/


Kafka instances are available using the DNS hostname kafka.eskimo.svc.cluster.eskimo
both within containers (PODs) running through Kubernetes and within containers running
natively on nodes.
Individual Kafka instances have specific names but the hostname above enables to reach
anyone of them in a random fashion (high availability),

6.10.1. kafka-cli package
A specific package called kafka-cli installs wrappers on the usual kafka command line
programs usually bundled with kafka distributions. It is intended to be installed on nodes where
operators, administrators or developers will interact with kafka.

6.11. Kafka Manager

Kafka Manager is a tool for managing Apache Kafka.

KafkaManager enables to manage multiples clusters, nodes, create and delete topics, run
preferred replica election, generate partition assignments, monitor statistics, etc.

https://github.com/lmenezes/cerebro

Kafka Manager is deployed in Kubernetes as a deployment, ensuring it’s availability on another
node when the former node running it goes down.

6.12. Apache Spark

Apache Spark is an open-source distributed general-purpose cluster-computing framework.
Spark provides an interface for programming entire clusters with implicit data parallelism and
fault tolerance.

Spark provides high-level APIs and an optimized engine that supports general execution
graphs. It also supports a rich set of higher-level tools including Spark SQL for SQL and
structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark
Streaming.

https://spark.apache.org/

6.12.1. spark-cli package
A specific package called spark-cli installs wrappers on the usual spark command line
programs usually bundled with Spark distributions. It is intended to be installed on nodes where
operators, administrators or developers will interact with spark.

6.12.2. Gluster shares for Spark
Nodes where spark is installed (either spark executor or spark history server or zeppelin)
automatically have following gluster shares created and mounted:

o /var/lib/spark/data where spark stores its own data but the user can store his own data
to be used accross spark executors as well

o /var/lib/spark/eventlog where the spark executors and the spark driver store their
logs and used by the spark history server to monitor spark jobs.

https://github.com/lmenezes/cerebro
https://spark.apache.org/


6.12.3. Other Spark specificities within Eskimo
The spark runtime is a registry only service. As long as no start job is running, there is no spark
POD running in kubernetes. The spark driver takes care of instantiating spark executor as
Kubernetes POD. The Spark driver itself can run within Kubernetes as a POD or outside
Kubernetes as a standalone process.

The Spark History Server on the other hand, leveraging on the same container image as spark
runtime PODs, is always up and running as a Kubernetes POD.

6.13. Apache Flink

Apache Flink is an open-source stream-processing framework.

Apache Flink is a framework and distributed processing engine for stateful computations over
unbounded and bounded data streams. Flink has been designed to run in all common cluster
environments, perform computations at in-memory speed and at any scale.

Apache Flink’s dataflow programming model provides event-at-a-time processing on both
finite and infinite datasets. At a basic level, Flink programs consist of streams and
transformations. Conceptually, a stream is a (potentially never-ending) flow of data records, and
a transformation is an operation that takes one or more streams as input, and produces one or
more output streams as a result.

https://flink.apache.org

6.13.1. flink-cli package
A specific package called flink-cli installs wrappers on the usual flink command line programs
usually bundled with Flink distributions. It is intended to be installed on nodes where operators,
administrators or developers will interact with flink.

The remote host to use in flink command line tools to reach flink deployed on Kubernetes with
Eskimo is flink-runtime-rest.eskimo.svc.cluster.eskimo and the port is 8081.

6.13.2. Gluster shares for Flink
Nodes where Flink is installed (either Flink App Master, Flink worker or Zeppelin) automatically
have the following gluster shares created and mounted:

o /var/lib/flink/data used to store data to be shared among flink workers.

o /var/lib/flink/completed_jobs where flink completed jobs are stored.

6.13.3. pyflink programs requirements on Eskimo
Within Eskimo, the pyflink python environment is available as a virtual environment packaged at
the following location: /usr/local/lib/flink/opt/python/venv.zip.

In order for this virtual environment to be available to user submitted pyflink jobs, the following
configurations must be declared:

    # specify the Python virtual environment

    t_env.add_python_archive("/usr/local/lib/flink/opt/python/venv.zip")

    # specify the path of the python interpreter which is used to execute the python UDF

workers

    t_env.get_config().set_python_executable("venv.zip/venv/bin/python")

or using Python DataStream API as following:

https://flink.apache.org


 

stream_execution_environment.add_python_archive("/usr/local/lib/flink/opt/python/venv.zip"

)

    stream_execution_environment.set_python_executable("venv.zip/venv/bin/python")

These configurations in the client job code are unfortunately required as of current version of
eskimo.

6.13.4. Other Flink specificities within Eskimo
A Flink POD is always running, it’s the Job Manager service which is constantly up and running
and takes care of instantiating Task Manager PODs.

6.14. Apache zeppelin

Apache Zeppelin is a web-based notebook that enables data-driven, interactive data analytics
and collaborative documents with SQL, Scala and more.

Zeppelin is a multiple purpose notebook, the place for all your needs, from Data Discovery to
High-end Data Analytics supporting a Multiple Language Backend.

Within Eskimo, zeppelin can be used to run flink and spark jobs, discover data in ElasticSearch,
manipulate files in Gluster, etc.

https://zeppelin.apache.org/

6.14.1. Zeppelin specificities within Eskimo
Within Eskimo, Zeppelin runs from within a docker container.
Command wrappers and custom command clients are available to enable it to use other
services, running themselves as docker containers under eskimo.

o Elasticsearch, flink and spark are called by using their dedicated intepreter

o Logstash is called by using the logstash-cli script from the shell interpreter

In addition, zeppelin has access to shared folders used by the different services in order to be
able to share data with them.
Following shares are mounted within the Zeppelin container:

o Logstash shared folder:

- /var/lib/elasticsearch/logstash/data

o Spark shares:

- /var/lib/spark/data

- /var/lib/spark/eventlog

o Flink shares:

- /var/lib/flink/data

- /var/lib/flink/completed_jobs

These shared folders are automatically shared among the different nodes of the cluster using
GlusterFS.

An additional share exist in order to be able to share data to the zeppelin docker container:

o /var/lib/zeppelin/data used to share data between hosts and the zeppelin container
(also automatically shared by gluster when deploying in cluster mode).

https://zeppelin.apache.org/


6.14.2. Shared or Per Note interpreters
Zeppelin’s interpreters - such as the Spark interpreter wrapping the spark submit process or the
ElasticSearch interpreter - can be instantiated globally for the whole zeppelin container of
isolated per note.
Eskimo’s settings page enables an administrator to change this configuration globally for all
zeppelin interpreters.

The default settings is shared which means that interpreters are shared by all notes within
zeppelin.



It’s absolutely key to understand what implication this default setting has in terms of user
experience. Stopping a shared interpreter means killing all jobs running on that
interpreter for all users working concurrently with Zeppelin.
For this reason, in a production multi-user environment, it’s important to make sure to
change this setting to per_note thus enabling a much better isolation between users.
In this case, it’s also very important to significantly increase the amount of memory
available to the zeppelin container to something with minimum 2Gb per user using
Zeppelin concurrently with a 2Gb base (e.g. 2 users would mean 2 Gb Base + 2 x 2 Gb for
each user, hence 6Gb RAM in total to give to Zeppelin).

Eskimo Enterprise Edition is required if one wishes to separate Zeppelin’s interpreters per user.

6.14.3. Eskimo packaged Zeppelin Sample notes
Upon Zeppelin installation, Eskimo sets up a set of Sample notes in Zeppelin to illustrate the
behaviour of the Eskimo cluster using different frameworks and the different packaged
technologies such as Flink, Spark, Logstash, etc.

These sample zeppelin notes are intended to demonstrate the possibilities with Eskimo and to
show how Zeppelin can be used to program Spark batch jobs, Spark Streaming jobs, Flink jobs,
etc.

The different sample note packages with Eskimo and available from within Zeppelin are
described hereafter.

ElasticSearch Demo (Queries)
This is a very simple demo note showing how to submit queries to ElasticSearch from a
Zeppelin note.

It uses the elasticsearch interpreter from Zeppelin.
One needs to have loaded the "Sample flight data" from within Kibana in prior to execute the
queries from this notebook.

Logstash Demo
The logstash demo note shows how to integrate with logstash on Eskimo from a Zeppelin note.

It uses the shell interpreter from Zeppelin and the command line client wrapper to logstash.
It uses the "sample berka transaction" datset downloaded from niceideas.ch and inserts it in
ElasticSearch using logstash.

Spark RDD Demo
This is a plain old Spark Demo note showing various RDD operations and how to run them from
within Zeppelin.

It uses the Spark interpreter from Zeppelin.



Spark ML Demo (Regression)
This is a simple note showing some basic ML feature sich as how to run a regression.

It uses the Spark interpreter from Zeppelin.

Spark SQL Demo
This is a simple note showing some Spark SQL functions from within Zeppelin and the way to
integrate with Zeppelin’s visualizations abilities.

It uses the Spark interpreter from Zeppelin.

Spark Integration ES
This note demonstrates how to integrate Spark and ElasticSearch on Eskimo from within
Zeppelin.

It uses the Spark Interpreter from Zeppelin and requires to run the "Logstash Demo" note first to
have the "Berka Transaction" dataset available in ElasticSearch in prior to using it.

Spark Integration Kafka
This note shows how to integrate Spark Streaming (Structured Streaming / SQL actually) and
kafka on Eskimo from within Zeppelin.

Two sample notes must have been executed in prior to executing this one : the "Logstash
Demo" and "Spark Integration ES", in this order.

It uses the Spark interpreter from Zeppelin.

Flink Batch Demo
This is a simple note showing some simple Flink Batch Computing examples.

It uses the Flink interpreter from Zeppelin.

Flink Streaming Demo
This note demonstrates a more advanced example of a flink streaming job. It registers a custom
data source and serves as an illustration purpose of Flink’s job monitoring abilities.

It uses the Flink interpreter from Zeppelin.

Flink Integration Kafka
This note shows how to integrate Flink Streaming with Kafka on Eskimo from within Zeppelin.

Two sample notes must have been executed in prior to executing this one : the "Logstash
Demov and "Spark Integration ES", in this order.

It uses the Flink interpreter from Zeppelin.

Kafka Streams Demo
This note shows how to implement a Kafka Streams Program using Zeppelin’s java interpreter.
It does not require any other note executions.

Multiple paragraphs are provided to read data from / send data to the kafka streams demo
program as well as top it (since one can’t use the stop button to stop java program run by the
java interpreter as of Zeppelin 0.9).

6.15. Prometheus



Prometheus is an open-source systems monitoring and alerting toolkit.

Prometheus’s main features are: a multidimensional data model with time series data identified
by metric name and key/value pairs, PromQL - a flexible query language to leverage this
dimensionality, automatic discovery of nodes and targets, etc.

https://prometheus.io/

6.15.1. Prometheus specificities within Eskimo
Within Eskimo, the packaging of prometheus is peculiar:

o The eskimo service identified by prometheus is the actual prometheus DB service. It is
operated by kubernetes and deployed as a single instance service

o The prom-node-exporter servie is actually the collection of all host native prometheus
exporters and deployed as a host native service in each and every eskimo cluster nodes.

6.16. Grafana

Grafana is the open source analytics & monitoring solution for every database.

Within Eskimo, Grafana is meant as the data visualization tool for monitoring purposes on top of
prometheus.

One can use Grafana though for a whole range of other data visualization use cases.

Within Eskimo, Grafana is mostly used as a Data visualization tool on Prometheus raw data, but
it can very well be used to view ElasticSearch data, Spark results, etc.

https://grafana.com/

6.16.1. Grafana specificities within Eskimo

Admin user / password
The default username / password to administer grafana within eskimo is eskimo / eskimo.
These credentials can be changed in the Eskimo grafana configuration part on "Eskimo Services
Configuration" page.

 The default username / password can only be changed before Grafana’s first start.

Grafana dashboards provisionning
Eskimo is able to provision Grafana dashboards automatically at installation time.

o dashboards and all references objects exports need to be put under
services_setup/grafana/provisioning/dashboards such as e.g.
services_setup/grafana/provisioning/dashboards/system-monitoring.json

along with a yaml file describing the dashboard (look at examples)

6.16.2. Pre-packaged Grafana Dashboards
Eskimo CE provides two pre-packaged Grafana dashboards :

o Eskimo System Wide Monitoring : This is the global cluster status monitoring dashboard.

https://prometheus.io/
https://grafana.com/


This dashboard is the one used on the Eskimo Status Page.

o Eskimo Nodes System Monitoring : This s a complete monitoring dashboard showing all
individual eskimo cluster nodes metrics. It is intended for fine-grained monitoring and
debugging purpose.



Chapter 7. Limitations within Eskimo Community Edition version 0.5
Eskimo CE - Community Edition - version 0.5 has some limitations regarding the state of the art
of what should be its behaviour from its DNA and its intents and compared to Eskimo Enterprise
Edition which addresses or works around most of these limitations with commercial features.

These limitations are described in this chapter.

7.1. etcd and node removal / re-installation after initial installation
Etcd is the distributed, reliable key-value store used by Kubernetes to store its runtime
configuration. Whenever a node is added or removed from etcd, it needs to be explicitly
removed, respectively added to the etcd cluster with the use of the etcdctl command.

(Sidenote : these commands are automated and as such not required within Eskimo Enterprise
Edition. We will likely backport this feature to Eskimo Community Edition in the next version -
v0.6)

7.1.1. Node removal
When a node running etcd is removed, either just before or right after removal, the node needs
to be explictely removed from the etcd cluster.

Start by discovering the ID of the node by using etcdctl member list:
etcdctl member list

[root@test-node1 vagrant]# export PATH=/usr/local/bin:$PATH

[root@test-node1 vagrant]# etcdctl member list

2bbedeef7a321ca9, started, node2, http://192.168.56.22:2380,

https://192.168.56.22:2379,https://localhost:2379, false

7a6ff46678be7f4c, started, node1, http://192.168.56.21:2380,

https://192.168.56.21:2379,https://localhost:2379, false

d9f480e3927c3ea0, started, node4, http://192.168.56.24:2380,

https://192.168.56.24:2379,https://localhost:2379, false

dab2e3fec0c94fc1, started, node3, http://192.168.56.23:2380,

https://192.168.56.23:2379,https://localhost:2379, false

If, for instance, the node one wants to remove from the cluster is node4, then use its ID to
remove the etcd node:

etcdctl member remove

[root@test-node1 vagrant]# etcdctl member remove 1b7723bd1b46a12f

7.1.2. Node addition
In the same way, if an etcd node is added to the cluster after the initial etcd setup, it needs
unfortunately to be added explicitly to the etcd cluster before the eskimo cluster node running
it is installed (or at least before the etcd service is installed on that node).

The command would be as follows:
etcdctl member add

[root@test-node1 vagrant]# etcdctl member add node4 --peer-urls=http://192.168.56.24:2380

7.1.3. Node re-installation
When a node is reinstalled, the ID of the etcd service instance will be reinitialized. Even though
both nodes names and peer URLs will be the same, as far as etcd is concerned, those would be
two different etcd instances.



So one needs to first remove the previous instance and then add it back using both commands
above.



Appendix A: Copyright and License
Eskimo is Copyright 2019 - 2023 eskimo.sh - https://www.eskimo.sh - All rights reserved.
Author : eskimo.sh - https://www.eskimo.sh

Eskimo is available under a dual licensing model : commercial and GNU AGPL.
If you did not acquire a commercial licence for Eskimo, you can still use it and consider it free
software under the terms of the GNU Affero Public License. You can redistribute it and/or
modify it under the terms of the GNU Affero Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.
Compliance to each and every aspect of the GNU Affero Public License is mandatory for users
who did no acquire a commercial license.

Eskimo is distributed as a free software under GNU AGPL in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero Public License for more details.

You should have received a copy of the GNU Affero Public License along with Eskimo. If not,
see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA, 02110-1301 USA.

You can be released from the requirements of the license by purchasing a commercial license.
Buying such a commercial license is mandatory as soon as :

o you develop activities involving Eskimo without disclosing the source code of your own
product, software, platform, use cases or scripts.

o you deploy eskimo as part of a commercial product, platform or software.

For more information, please contact eskimo.sh at https://www.eskimo.sh

The above copyright notice and this licensing notice shall be included in all copies or
substantial portions of the Software.

https://www.eskimo.sh
https://www.eskimo.sh
https://www.gnu.org/licenses/
https://www.eskimo.sh

	Eskimo User and Administration Guide
	Table of Contents
	Chapter 1. Eskimo Introduction
	1.1. Key Features
	1.2. Why is Eskimo cool ?
	1.3. Eskimo’s DNA
	1.4. Eskimo Architecture
	1.4.1. Technical Architecture
	1.4.2. Typical Application architecture
	1.4.3. Sample System Architecture

	1.5. Eskimo building

	Chapter 2. Eskimo Installation
	2.1. Installation target
	2.1.1. Local Eskimo installation
	2.1.2. Installing eskimo on Windows.

	2.2. Prerequisites
	2.2.1. Java 11 or greater
	2.2.2. System requirements
	2.2.3. Network requirements
	2.2.4. Prerequisites on eskimo cluster nodes
	Minimum hardware

	2.2.5. Required packages installation and Internet access on cluster nodes
	Eskimo system user
	Protecting eskimo nodes with a firewall


	2.3. Extract archive and install Eskimo
	2.3.1. SystemD Unit file Installation
	2.3.2. Extracted Archive layout and purpose
	2.3.3. Utility commands

	2.4. Access eskimo
	2.5. First run and initial setup
	2.5.1. Building packages locally
	Requirements
	Instructions to install these tools

	2.5.2. Checking for updates

	2.6. Typical startup issues
	2.6.1. eskimo-users.json cannot be written

	2.7. Setting up SSH Public Key Authentication
	2.7.1. Introduction
	2.7.2. How Public Key Authentication Works
	2.7.3. Generate an SSH Key Pair
	2.7.4. Configure an SSH/SFTP User for Your Key
	Method 1: Using ssh-copy-id
	Method 2: Manual Configuration

	2.7.5. Log In Using Your Private Key
	2.7.6. Granting Access to Multiple Keys
	2.7.7. Use the private key in eskimo


	Chapter 3. Setting up the eskimo cluster
	3.1. Services settings configuration
	3.2. Nodes and native services layout configuration
	3.2.1. Adding nodes to the eskimo cluster
	3.2.2. Deploying services
	3.2.3. Master services
	3.2.4. Slave services
	3.2.5. Applying nodes configuration
	3.2.6. Forcing re-installation of a service.

	3.3. Kubernetes Services Selection

	Chapter 4. Eskimo User Guide
	4.1. The menu
	4.2. Eskimo System Status Screen
	4.2.1. Action Menu

	4.3. Acting on services reporting errors upon installation
	4.4. SSH and SFTP Client
	4.4.1. SSH Terminal
	4.4.2. SFTP File Manager

	4.5. Services Web Consoles
	4.5.1. Demo Mode
	4.5.2. The DemoVM
	4.5.3. Deactivating Demo Mode on the demo VM

	4.6. Docker images versioning

	Chapter 5. Eskimo Architecture and Design Elements
	5.1. SSH Tunelling
	5.2. Security
	5.3. Confidentiality and cluster protection
	5.3.1. Data Encryption
	5.3.2. User rights segregation and user imprersonation

	5.4. High availability

	Chapter 6. Eskimo pre-Packaged services
	6.1. Eskimo services operation principles
	6.1.1. SystemD unit configuration files
	6.1.2. Kubernetes Deployment descriptors
	6.1.3. Commands wrappers for kafka, logstash, spark and flink
	6.1.4. A specific generic wrapper
	6.1.5. Reloading a Service UI IFrame

	6.2. NTP
	6.3. Zookeeper
	6.3.1. Zookeeper specificities within Eskimo

	6.4. GlusterFS
	6.4.1. Gluster Infrastructure
	6.4.2. Gluster mounts management
	6.4.3. Gluster specificities within Eskimo

	6.5. Kubernetes
	6.5.1. Kubernetes specificities within Eskimo
	Kubernetes services name resolution on host nodes
	Kubernetes Dashboard


	6.6. Elastic Logstash
	6.6.1. Logstash specificities within Eskimo
	6.6.2. logstash-cli package
	6.6.3. Gluster shares for Logstash

	6.7. ElasticSearch
	6.8. Cerebro
	6.9. Elastic Kibana
	6.9.1. Kibana specificities within Eskimo
	6.9.2. Pre-packaged Kibana Dashboards

	6.10. Apache Kafka
	6.10.1. kafka-cli package

	6.11. Kafka Manager
	6.12. Apache Spark
	6.12.1. spark-cli package
	6.12.2. Gluster shares for Spark
	6.12.3. Other Spark specificities within Eskimo

	6.13. Apache Flink
	6.13.1. flink-cli package
	6.13.2. Gluster shares for Flink
	6.13.3. pyflink programs requirements on Eskimo
	6.13.4. Other Flink specificities within Eskimo

	6.14. Apache zeppelin
	6.14.1. Zeppelin specificities within Eskimo
	6.14.2. Shared or Per Note interpreters
	6.14.3. Eskimo packaged Zeppelin Sample notes
	ElasticSearch Demo (Queries)
	Logstash Demo
	Spark RDD Demo
	Spark ML Demo (Regression)
	Spark SQL Demo
	Spark Integration ES
	Spark Integration Kafka
	Flink Batch Demo
	Flink Streaming Demo
	Flink Integration Kafka
	Kafka Streams Demo


	6.15. Prometheus
	6.15.1. Prometheus specificities within Eskimo

	6.16. Grafana
	6.16.1. Grafana specificities within Eskimo
	Admin user / password
	Grafana dashboards provisionning

	6.16.2. Pre-packaged Grafana Dashboards


	Chapter 7. Limitations within Eskimo Community Edition version 0.5
	7.1. etcd and node removal / re-installation after initial installation
	7.1.1. Node removal
	7.1.2. Node addition
	7.1.3. Node re-installation


	Appendix A: Copyright and License

