Eskimo Service Developer Guide

eskimo.sh - https.//www.eskimo.sh - 2019-2023

Table of Contents

L INtrOAUCHION. L 1
1L ESKIMO o 1
12 Key Features . .. o 1
1.3. The Service Developer GUIAEo 2
2. Introducing the Service Development Framework i 3
2.1 PrinCiple sSChema .. . o 3
2.2. COre PIINCIPLES . . 3
2.3. Anote onimages' template download.. 4
3. Docker Images Development Framework. o o 5
3 REQUIrEMENTS. 5
32 PHINCIDLE . 5
3.3. identifying required images iNn SEervi CeS. J SONot 6
3.4. Standards and conventions over requirements. 6
3.5. Typical build.Sh ProCESS . .. o 7
3.5.1. Operations performed. 7
3.6. Look for examples and getinspired 8
3.7. Building the Kubernetes archive. 8
3.8. Specific and various notes related to individual components shipped with Eskimo.......... 8
381 . Zeppelin BUILAING . ..o 8
3.9. Setting up a remote packages repoSItory o 9
4. Services Installation Framework. 11
AL PHINCIDlE. o 11
411 GlUSEEr sShare MOUNTS. . .. o 12
4.1.2. OS System Users Creation.o 12
4.2. Standards and conventions over requirements. 13
4.3. TypICal SEtUP.SN PrOCESS 13
4.3.1. Operations performed. 13
4.3.2. Standard and conNventioNs 14
4.3.3. Look for examples and getinspired. ... 14
4.4. Eskimo services configuration 14
4.4.1. Configuration file Servi CeS. | SON... ... 15
4.4.2. Eskimo Topology and dependency managementoo i, 20
Master Election strategy 20
EXaMIDLES . . o 21
4.4.3. Memory alloCation. 22
Services memory CONfIGUIatioN 22
Examples of memory allocation. 23
Kubernetes services memory configuration............. .o 24
Custom memory allocation 24
4.4.4. Topology file on cluster NOdes 24
4.5. Proxying services web CONSOLes. 24
451 . Source text replacements 24
Standard replacements 25
CUSTOM replacemMEents. . . 25
452 URL reWIING . oo 26

4.5.3. Page SCripters o 26

4.5.4. Master detection system (for multiple instances services), 26

4.6. BASH Utilities framework and functions. 27
4.6.1. LoCKINg Framework.o 27
4.6.2. CLI utilities docker volume mount needs detection 28
4.6.3. Getting last tag to use for an Eskimo service dockerimage 28
4.6.4. Gluster Mount utility script. o 29
4.7.Docker Images VErSiONINGo 29
470 PriINCIPlE . 29
4.7.2. Services Customization TOOL. o 30

Appendix A: Copyright and LiCense 32

Chapter 1. Introduction

1.1. Eskimo

A state of the art Big Data Infrastructure and Management Web Console to build, manage and

operate Big Data 2.0 Analytics clusters

Eskimo is in a certain way the Operating System of your Big Data Cluster:
o Aplug and play, working out of the Box, Big Data Analytics platform fulfilling enterprise
environment requirements.
O A state of the art Big Data 2.0 platform
- based on Kubernetes, Docker and Systemd
- packaging Gluster, Spark, Kafka, Flink and ElasticSearch

- with all the administration and management consoles such as Cerebro, Kibana, Zeppelin,
Kafka-Manager, Grafana, Prometheus and of course the _Kubernetes Dashboard:.

o An Administration Application aimed at drastically simplifying the deployment,
administration and operation of your Big Data Cluster

o A Data Science Laboratory and Production environment where Data Analytics is both
- developed and
- operated in production

Eskimo is as well:

o a collection of ready to use docker container images packaging fine-tuned and highly
customized plug and play services with all the nuts and bolts required to make them work
perfectly together.

o a framework for building and deploying Big Data and NoSQL software components on
Kubernetes as well as SystemD for host native components.

Eskimo
Administrationand Management
) ; Kube Flink Kafka Spark
‘ “ibana ‘a Zeppelin ashboard Dashb. §€ Manager @ Cerebro J\z History
wm Logstash §€ Kafka J\Z Spark é Flink -g- Prometheus rd Grafana
Resources Management

Low Leveland System Orchestration

ﬁ\Gluster FS ‘= ElasticSearch systemd &> Docker iﬁZookeeper

1.2. Key Features

Eskimo key features are as follows:

Abstraction of Location

Just pick up the services you need, define where and how you want to run
them and let eskimo take care of everything.

9 Move native services between nodes, change their configuration or install
new services in just a few clicks.

Don't bother remembering where and how things run, Eskimo wraps
everything up in a single and coherent User Interface.

Eskimo Web User Interface

Eskimo's tip of the iceberq is its flagship Web User Interface.

> The Eskimo User Interface is the single and only entry point to all your
cluster operations, from services installation to accessing Kibana, Zeppelin

and other Ul applications.

The Eskimo User Interface also provides SSH consoles, File browser access
and monitoring to your cluster.

Services Framework

Eskimo is a Big Data Components service development and integration
framework based on Kubernetes, Docker and Systemd.

Eskimo provides out of the box ready-to use components such as Spark,
Flink, ElasticSearch, Kafka, Kubernetes Dashboard, Zeppelin, etc.

Eskimo also enables developers and administrators to implement and
package their own services very easily.

1.3. The Service Developer Guide

This documentation is related to the last of the key features presented above : The Services
Development Framework.

It presents all concetps and aspects a developer needs to understand and know to implement
his own services and let eskimo distribute and operate them, or extend current services.

Chapter 2. Introducing the Service Development Framework
The Service Development framework is actually composed by two distinct parts:

o The Docker Images Development Framework which is used to build the docker images
deployed on the eskimo cluster nodes

o0 The Services Installation Framework which is used to install and setup these images as
services on the eskimo cluster nodes.

2.1. Principle schema

The whole services development framework can be represented as follows:

1 . . -
Images Development Framework Services Installation Framework System Customization Tool
1
Phase Install 1 Setup Runtime Customization
1
- 1
—
o o l
o= build.sh 1 setup.sh AL e TR eskimo-edit-image.sh
= -~ =» Runtime Lifecycle management 0 . .
n e = Download and install software 1 = Fine t Manage and Run container with = Customize service Docker image
3 o (generic way) from official repo. 1 dapt to 9 p post-installation and make it
oo Kubernetes or docker on host. . .
- Save container template Image 1 Start software service available to services
1
; : _ ;
= (=) =
________________ 0 o mm————————— e meees U cmmm e - —————————
8 1 -- 8
«_I by
5] 21 = - : :
5 ST b inContainerStartService.sh
o C H = = o > Invoke Service start command . .
8§ installServiceX.sh aé-ll @ m Customization
8 E :]nwnu Ku minternet 8l 3 Shellor script
sta /usr/local/ H H =
a8 nstatt in Ausrocstiin UI = inContainerinjectTopology.sh
c 1 o = Inject runtime configuration
=]
g 1 g
.] 1]
)
E ey /packages_distrib : Docker localrepo/ registry
=]
- 0
i 2 i
2= (increase version]
w

Happens on Eskimo local machine Happens on Eskimo Cluster

o The Docker Images Development Framework is used to develop and build Service Container
template images that are later used to build the actual docker containers images that are
fine-tuned to Eskimo deployed on Kubernetes or natively on individual Eskimo cluster
nodes.

The Service Container Template Image itself is very generic docker image around the
underlying software component (e.g. Kafka, Spark, etc.) and might well be used outside of
Eskimo.

o The Services Installation Framework which creates the actual Eskimo Service container
image from the template image by adapting it to the specific situation of the eskimo node or
kube cluster on which it is being deployed.

The actual Eskimo Service Container Image if very specific to Eskimo; even further, it is very
specific to the very Eskimo cluster on wich it is being deployed.

The different scripts involved in the different stages are presented on the schema above along
with their responsibilities and the environment in which they are executed (outside of the
container - on the eskimo host machine or the eskimo cluster node - or from within the docker
container, operated through Kubernetes or not).

2.2, Core principles

The core principles on which both the Docker Images Development Framework and the Services
Installation Framework are built are as follows:

o A service is eventually two things

- a docker image packaging the software component and its dependencies (also, rarely, it

can be an archive of native programs directly deployed on the cluster node, e.g. for the
Kubernetes stack).
- a set of shell scripts aimed at installing and setting up the service
- plus essentially:
) either A kubernetes service deployment YAML file describing the components to
deploy on kubernetes
) or a systemd unit configuration file aimed to operate it on nodes
o Everything - from building the docker image to installing it on cluster nodes - is done using
simple shell scripts. With Eskimo, a system administrator desiring to leverage on eskimo to
implement his own services in order to integrate additional software components on Eskimo

doesn't need to learn any new and fancy technology, just plain old shell scripting, docker,
and aiether systemd or perhaps a bit of kubernetes configuration; that's it.

o Eskimo leverages on unix standards. Software components are installed in/ usr/ | ocal , log
files are in sub-folders of / var / | og, persistent data is in sub-folders of / var/ | i b, etc.

2.3. A note on images' template download.

At eskimo first start, the user (administrator) needs to choose whether he wants to build the
services images (docker container templates images) locally or download them from eskimo.sh.

o Buidling the images locally means creating each and every docker template image using
the bui | d. sh script. Only the vanilla software packages are downloaded from internet
(such as the elasticsearch distribution, the spark or flink, archive, etc.).

This can take a significant time, several dozens of minutes or more.

o Downloading the images from internet means downloading ready-to-use docker template

images from eskimo.sh

The whole setup process when downloading the images from internet can be represented this
way:

1 . . -
Images Development Framework Services Installation Framework System Customization Tool
1
Phase Install 1 Setup Runtime Customization
1
- 1
. .
S o D eskimo.sh I
25 % 1 setup.sh Sysmer e eskimo-edit-image.sh
= c o 1 = FiE OG0 S aee e o < Runtime Lifecycle management 3 Customi ice Docker i
E c ; @ Ine tune sottware for eskimo Manage =] Sl G v - ustomize service Docker image
S o 5 o 1 Adap kim onment post-installation and make it
oo o I Kubernetes or docker on host. . .
1 tainer Image 3 available to services
1 ~ Start software service
Downloadingimages from 1
eskimo.sh 1 2 = g 9
___ L e) e cececeeeeeeess e eeemmr: ceeeee————
+ 8 < g 3
N 5 g
5] > A - - -
-4 - . q d
S & =1 inContainerSetupServiceX.sh S TR R S e
o C "3| o < Invoke Service start command
a5 o 'GEJ.I P figuration o Customization
- e
85 S 2l <tatic orovertics. TS i e Shellor script
B O) 1 Sheproperies. inContainerinjectTopology.sh
£ 1 Ko} = Inject runtime configuration
I g
[1 w)
o
E [l /packages_distrib : Docker localrepo/ registry
=
= 0
.2 :
i r: e
== lincrease version]
i

Happens on Eskimo Cluster

Happens on Eskimo local machine

Chapter 3. Docker Images Development Framework

Eskimo manages services (e.g. Flink, Kafka, ElasticSearch, Kibana, etc.) as Docker containers. A
docker container is most of the time the individual and single unit representing a service to be
managed by Eskimo (exceptions are CLI - commad line tools - packages for instance).

Docker containers packaging eskimo services should be most of the time downloaded from the
Eskimo online package repository. But an administrator can very well decide to build his own
versions of Eskimo provided service template images or even implement his own service
packages.

This is described in this section.

The Docker Images Development Framework provides tools and defines standards to build the
docker images deployed on the eskimo cluster nodes.

Eskimo is leveraging on docker to deploy services either on Kubernetes or natively across the
cluster nodes and to ensure independence from host OSes and specificities as well as proper
isolation between services.

Again, Docker images can be downloaded from internet (or the internal network of the
corporation) or build locally on the machine running the Eskimo backend.

3.1. Requirements

In order for one to be able to either build the eskimo software components packages locally (or
have eskimo building them locally), there are a few requirements:

o Docker must be installed and available on the user local computer or the Eskimo host
machine in case Eskimo builds them.

o0 The Eskimo host machine should have access to Internet
o0 At least 10Gb of hard drive space on the partition hosting / t mp must be available.

0 At least 15Gb of hard drive space on the partition hosting the eskimo installation folder
(Eskimo backend) must be available.

3.2. Principle
The principle is pretty straightforward:

o Every docker image (or package) is built by calling bui | d. sh from the corresponding
package folder, i.e. a sub-folder of this very folder packages_dev

o That bui I d. sh script is free to perform whatever it wants as long as the result is a docker
image with the expected name put in the folder packages_di stri b in the parent folder
and properly packaging the target software component.

o By convention, the actual software component download and installation from within the
container is done by a script names i nst al | Ser vi ceX (for a component that would be
called "serviceX". More on that below.

This principle is illustrated as follows:

Images Development Framework

o
=
o
0
o

Install

build.sh

=> Download and install software

Outside of
Container

[generic way) from official repo.
- Save container template Image

Calls

iceX.sh

e from internet

Inside Docker
Container

Store

/packages_distrib

registry

Container template
Image

Happens on Eskimo local machine

Filesystemor

Build files are provided for each and every service pre-packaged within eskimo.

The user is welcome to modify them in order to fine tune everything the way he wants or
implement his own packages for other software components not yet bundled with eskimo.
Again, the only requirement is that at the end of the build process a corresponding image is put
in packages_di stri b as well as that some conventions are properly followed as explained
below.

Internet is usually required on the eskimo machine to build or re-build the eskimo provided pre-
packages images since the target software component is downloaded from Internet.

3.3. identifying required images in ser vi ces. j son

Eskimo needs a way during initial setup time to know which packages need to be built or
downloaded. The list of docker images to be built is composed by the conjunction of two lists:

o The images referenced by services in servi ces. j son (See Configuration file
services.json)

o The additional packages from configuration property
syst em addi ti onal PackagesToBui | d in the configuration file eski no. properti es,
such as, for instance: base-eskimo

default syst em addi ti onal PackagesToBui | d property
syst em addi ti onal PackagesToBui | d=base- eski no

The property syst em addi t i onal PackagesToBui | d is required to identify 3rd party or
additional images that are required when building service images.

Only service images can be declared in servi ces. j son.

By default, only the image base- eski nb being used by all the orher package images needs to
be built in addition to the ones actually in use by services and declared in ser vi ces. j son.

3.4. Standards and conventions over requirements

There are no requirements when building an eskimo package docker image. The image
developer is free to install the software package within the image the way he wants and no
specific requirement is enforced by eskimo.

As long as eventually, The Service Installation framework for the new software package provides
a systemd unit configuration file enabling the eskimo framework to manipulate the service, a

service developer has all the freedom to design his docker container the way he wants.

However, adhering to some conventions eases a lot the implementation and maintenance of
these images.
These standard conventions are as follows:

o All docker images are based on the base- eski no image which is itself based on a
lightweight debian bullseye image (as of version 0.5 of esimo)

o A software component named X with version Y should be installed in/ usr/ 1 ocal /i b/ x-y
(if and only if it is not available in apt repositories and installed using standard debian apt -
get install x).

- In this case, a symlink preventing the further Services Installation framework from the
need to mess with version numbers should be created :/ usr/1 ocal /| i b/ x pointing to
[usr/local/lib/x-version.

- This symlink is pretty important. In the second stage, when installing services on eskimo
cluster nodes, it is important that setup and installation scripts can be prevented from
having to know about the actual version of the software component being installed.
Hence the need for that symlink.

o The presence of a single bui | d. sh script is a requirement. That script is called by eskimo to
build the package if it is not yet available (either built or downloaded)

o0 A helper script.. . / common/ common. sh can be linked in the new package build folder using
In -s ../common/ comon. sh. This common script provides various helper functions to
build the docker container, save it to the proper location after building, etc.

o The script performing the in container installation of the software component X is usually
calledinstal | X. sh.

o Software versions to be downloaded and installed within docker images are defined once
and for all in the file . . / conmon/ common. sh. This is actually a requirement since most of
the time software version for common components such as ElasticSearch or scala are used
in several different packages. Defining version numbers of software components to be
downloaded and installed in a common place helps to enforce consistency.

o The result image put in packages_di st ri b should follow a strict naming convention:
docker tenpl ate_{software-
nane} {software.version}_{eskino.version}.tar.gz, eg.
docker _tenpl at e_kaf ka_2.8.2_1.tar.gz. Thisis mandatory for Eskimo to be able to
manipulate the image later on.

An eskimo component package developer should look at pre-packaged services to get
inspired and find out how eskimo packaged services are usually implemented.

3.5. Typical build.sh process

3.5.1. Operations performed

The build process implemented as a standard in the bui | d. sh script has two different stages:
1. The container preparation and all the container setup operated from outside the container
2. The software installation done from inside the container

As a convention, installation of all dependencies is performed from outside the container but
then the installation of the software packaged in the container is performed from a script called
within the container (script i nst al | X. sh for package X).

The build process thus typically looks this way:
1. From outside the container:
- Creation of the container from the base eskimo image (debian based)
- Installation of the prerequisites (Java JDK, Scala, python, etc)) using docker exec ...
- Calling of the software installation script : docker exec -it ...install X sh
2. From inside the container:
- Downloading of the software from internet
- Installation in a temporary folder
- Moving of the installation software to/ usr/ 1 ocal / | i b/ X- Ver si on or else
- symlinking the software from / usr/ | ocal / I i b/ X (without version number)
And that's it.

The package installation is limited to this, all the customizations and fine tuning the image for its
use by eskimo is done at a later stage, during the Service Installation on Kubernetes or directly
on eskimo cluster nodes (for native node services).

3.6. Look for examples and get inspired

Look at the packages development scripts of eskimo pre-packaged components for examples
and the way they are built to get inspired when implementing your own packages.

3.7. Building the Kubernetes archive

Building the Kubernetes archive is different than building the component images as presented
above. As a matter of fact, Kubernetes is installed natively on Eskimo cluster nodes and not
through docker.

The bui I d. sh script in the bi nary_k8s folder behaves differently. It's objective is to package
all of the Kubernetes runtime components software within a single archive. These components,
from etcd to the different kube master and slave processes are packages together and
extracted natively on Eskimo cluster nodes for native execution during the node base
installation process.

3.8. Specific and various notes related to individual components shipped
with Eskimo

This section presents different important notes related to some specific services shipped with
Eskimo building aspects.

3.8.1. Zeppelin building
Zeppelin can be built from a checkout of the latest git repository master or from an official
release.

The file common/ commmon. sh defines a variable ZEPPELI N _| S SNAPSHOT which, when defined
to true, causes the build system to work from git and rebuild zeppelin from the sources instead
of downloading a released package.

export ZEPPELIN IS SNAPSHOT="fal se" # set to "true" to build zeppelin fromzeppelin git
mast er

Importantly, zeppelin will be build in the folder / t np/ of the host machine running eskimo
(using a docker container though) which maps / t np to its own / t np).

At least 20 GB of storage space needs to be available in/ t np of the machine running eskimo
for the build to succeed.

It is recommended though to use a binary archive of Zeppelin since the build from the source
rarely succeeds out of the box (Zeppelin build system is fairly complicated and the eskimo
team maintains the "build from source" feature only when the last binary release of Zeppelin
suffers from impacting bugs or limitations we want to workaround).

3.9. Setting up a remote packages repository

When setuping eskimo after initial launch, software packages - either service docker images or
the Kube binary archive - can be either built or downloaded from a remote packages
repository.

Setting up a remote packages repository is extremely simple:

o The software packages need to be downloadable from internet at a specific URL using
either HTTP or HTTPS.

o at the same location where packages are downloaded, a meta-data file should be
downloadable and present the various available packages.

For instance the following layout should be available from internet or the local network:

o https:/ /www.eskimo.sh/eskimo/Vo0.5/eskimo_packages_versions.json
https.//www.eskimo.sh/eskimo/V0.5/docker_template_base-eskimo_0.2_1.tar.gz
https.//www.eskimo.sh/eskimo/V0.5/docker_template_cerebro_0.8.4_1tar.gz
https:.//www.eskimo.sh/eskimo/V0.5/docker_template_elasticsearch_6.8.3_1.tar.gz
https.//www.eskimo.sh/eskimo/V0.5/docker_template_flink_1.9.1_2.tar.gz
https.//www.eskimo.sh/eskimo/V0.5/docker_template_gluster_debian_og_stretch_1.tar.gz

etc.

0O O O O O O O

https.//www.eskimo.sh/eskimo/V0.5/eskimo_kube_1.23.5_1tar.gz
A software package should be named as follows:

o docker _tenpl ate_[software-
nanme] _[sof tware. versi on] _[eski no. version].tar. gz for service docker images

o eski no_kube [software. version] [eskino.version].tar. gz for kube archive

The file eski nb_packages_ver si ons. j son describes the repository of packages and the
available packages.

Example eskimo_packages_versionsjson

{

"base-eski np" : {
"software" : "0.2",
"distribution" : "1"

H

"cerebro": {
"software": "O0.8.4",

"distribution": "1"

}

| asticsearch" : {
"software": "6.8.3",
"distribution": "1"
}
"flink" @ {

"software" : "1.9.1",

https://www.eskimo.sh/eskimo/V0.5/eskimo_packages_versions.json
https://www.eskimo.sh/eskimo/V0.5/docker_template_base-eskimo_0.2_1.tar.gz
https://www.eskimo.sh/eskimo/V0.5/docker_template_cerebro_0.8.4_1.tar.gz
https://www.eskimo.sh/eskimo/V0.5/docker_template_elasticsearch_6.8.3_1.tar.gz
https://www.eskimo.sh/eskimo/V0.5/docker_template_flink_1.9.1_2.tar.gz
https://www.eskimo.sh/eskimo/V0.5/docker_template_gluster_debian_09_stretch_1.tar.gz
https://www.eskimo.sh/eskimo/V0.5/eskimo_kube_1.23.5_1.tar.gz

"distribution": "1"

1

"gluster": {
"sof tware" : "debian_09_stretch",
"distribution": "1"

H

"kube": {
"software": "1.23.5",
"distribution": "1"

}

}
It's content should be aligned with the following properties from the configuration file
eski mo. properti es:
o system addi ti onal PackagesToBui | d and images declared on servi ces. j son giving
the set of docker images for packages to be or downloaded

o syst em kubePackages giving the name of the kubernetes package to be built or
downloaded

Chapter 4. Services Installation Framework

The Services Installation Framework provides tools, standards and conventions to install the
packaged docker images containing the target software component - through it's tmplate
docker image - on Kubernetes or natively on the eskimo cluster nodes.

Eskimo is leveraging on Kubernetes to run and operate most of the services and the couple
docker and SystemD for the few of them - such as gluster, ntp, etc - that need to run natively on
Eskimo cluster nodes.

o0 An eskimo package has to be a docker image
o0 An eskimo package has to provide

- either a SystemD unit configuration file to enable eskimo to operate the component
natively on the cluster nodes.

- or a Kubernetes YAML configuration file generator to delegate the deployment and
operation to Kubernetes.

The Eskimo Web User Interface takes care of installing the services defined in the

servi ces. j son configuration file and copies them over to the nodes where they are intended
to be installed (nhative node or Kubernetes) along with the corresponding package template
docker image. After the proper installation, eskimo relies either on plain old syst entt | or
kubect | commands to operate (deploy / start / stop / restart / query / etc) the installed
services.

4.1. Principle
The principle is pretty straightforward:

o0 Whenever a service ser vi ceXis to be deployed, eskimo makes an archive of the folder
servi ces_set up/ servi ceX copies that archive over to the target node and extracts it in a
subfolder of / t np.

- The target node is the intended installation cluster node for a node native service
- and the node runhing the kube- mast er service for a kubernetes service.

o0 Then eskimo calls the script set up. sh from within that folder. The script set up. sh can do
whatever it wants but has to respect a few constraints

- After that set up. sh script is properly executed, the service should be

) either installed natively on the node along with a systemd system unit file with name
servi ceX. servi ce which is used to control the serviceX service lifecycle through
commands such assystentt| start serviceX

) or properly deployed in Kubernetes and executing a POD name prefixed by the
service name and a kube service matching it. All of them being declared in a file
servi ceX. k8s. yn . sh which is actualyl a script generating the service file after
proper injection of Eskimo Topology and configuration.

- If the service is a CLI package, then a dummy systemd unit file still needs to be provided
(it can simply periodically check that the CLI command are still installed or the used
dockre image still available for instance).

o By convention, the script set up. sh uses a scripti nCont ai ner Set uSer vi ceX. sh to
perform in container configurations.

The principle can be illustrated as follows:

Services Installation Framework

Setup Runtime

SystemD or Kubernetes
=» Runtime Lifecycle management
- Manage and Run container with
Kubernetes or docker on host.

- Start software service

setup.sh

Calls

inContainerStartService.sh
=> Invoke Service start command

(&)
inContainerinjectTopology.sh
=» Inject runtime configuration

Service Start

inContainerSetupServiceX.sh
- n

Rulled (Kube or SysterthD)

[
=
o
=1
w0

Docker localrepo/ registry

Container Image

€

Happens on Eskimo Cluster

Aside from the above, nothing is enforced and service developers can implement services the
way they want.

4.1.1. Gluster share mounts

Many Eskimo services can leverage on gluster to share data across cluster nodes.
SystemD services rely on the host to mount gluster shares and then mount the share to the
gluster container from the host mount.

The way to do this is as follows:

o The service set up. sh script calls the script / usr/ | ocal / shi n/ gl ust er - nount . sh
[SHARE_NAME] [SHARE_PATH] [OANER_USER]
This script will take care of registering the gluster mount with SystemD, fstab, etc.
o The service SystemD unit file should define a dependency on the SystemD mount by using
the following statements
After=gl uster.service
Af t er =[SHARE_PATH_HYPHEN- SEPARATED] . nount
Using the host to mount gluster shares is interesting since it enables Eskimo users to see the
content of the gluster share using the Eskimo File Manager.

The approach is very similar for Kubernetes services, except they can't be relying on SystemD
(which is not available to Kube containers)
So Kubernetes services actually mount the gluster share directly from inside the docker
container.
The way to do this is as follows:
o The container startup script calls the script i nCont ai ner Mount G ust er. sh
[SHARE_NAME] [SHARE_PATH] [OANER_USER]

4.1.2. OS System Users creation

OS system users required to execute Kubernetes and native services are required to be created
on every node of the Eskimo cluster nodes with consistent user IDs across the cluster . For this
reason, the linux system users to be created on every node are not created in the individual
services set up. sh scripts. They are created by a specific script / usr/ | ocal / sbi n/ eski no-
syst em checks. sh generated at installation time by the eskimo base system installation script
i nstal | - eski nb- base-system sh.

4.2. Standards and conventions over requirements

There are no requirements when setting up a service on a node aside from the constraints
mentioned above. Services developers can set up services on nodes the way then want and no
specific requirement is enforced by eskimo.

However, adhering to some conventions eases a lot the implementation and maintenance of
these services.
These standard conventions are as follows (illustrated for a service called ser vi ceX.

o Data persistency

- Cluster node native Services should put their persistent data (to be persisted between
two docker container restart) in/ var /1 i b/ ser vi ceX which should be mounted from
the host by the called to docker in the SystemD unit file

- Kubernetes services should either rely on Kubernetes provided persistent storage or use
a gluster share.

- In any case, gluster shares to be created for services should be declared in the gl ust er
service definition in servi ces. j son in the editable settings property t ar get . vol unes
(look at pre-packaged ser vi ces. j son for examples)

o Services should put their log files in/ var / | og/ ser vi ceX which is mounted from the
runtime host.

o If the service requires a file to track its PID, that file should be stored under
/var/run/ servi ceXto be mounted from the runtime host as well.

o Whenever a service ser vi ceX requires a subfolder of / var/ | og/ ser vi ceXto be shared
among cluster nodes, a script set upSer vi ceXd ust er Sar es. sh should be defined that
calls the common helper script (define at eskimo base system installation on every node)
/usr/ 1 ocal / sbi n/ gl uster-nount. sh inthe following way, for instance to define the
flink data share : / usr/ | ocal / sbi n/ gl uster-nount.sh flink_data
/var/lib/flink/data flink

o0 The approach is the same from within a container, but the name if the script to call is
different:/ usr/ 1 ocal / shi n/ i nCont ai ner Mount G ust er Shar e. sh.

At the end of the day, it's really plain old Unix standards. The only challenge comes from the
use of docker and/or Kubernetes which requires to play with docker mounts a little bit.
Just look at eskimo pre-packaged services to see examples.

4.3. Typical setup.sh process

4.3.1. Operations performed

The setup process implemented as a standard in the set up. sh script has three different
stages:

1. The container instantiation from the pre-packaged image performed from outside the
container

2. The software component setup performed from inside the container
3. The registration of the service to SystemD or Kubernetes

4. The software component configuration applied at runtime, i.e. at the time the container
starts, re-applied everytime.

The fourth phase is most of the time required to apply configurations depending on

environment dynamically at startup time and not statically at setup time.

The goal is to address situations where, for instance, master services are moved to another
node (native deployment) or moved around by Kubernetes. In this case, applying the master
setup configuration at service startup time instead of statically enables to simply restart a slave
service whenever the master node is moved to another node instead of requiring to entirely re-
configure them.

The install and setup process thus typically looks this way:
1. From outside the container:

- Perform required configurations on host OS (create / var /| i b subfolder, required
system user, etc.)

- Run docker container that will be used to create the set up image

- Call in container setup script
2. From inside the container:

- Create the in container required folders and system user, etc.

- Adapt configuration files to eskimo context (static configuration only !)
3. At service startup time:

- Adapt configuration to topology (See Eskimo Topology and dependency management
below)

- Start service
And that's it.

Again, the most essential configuration, the adaptation to the cluster topology is not done
statically at container setup time but dynamically at service startup time.

4.3.2. Standard and conventions
While nothing is really enforced as a requirement by eskimo (aside of SystemD / Kubernetes
and the name of the set up. sh script, there are some standards that should be followed
(illustrated for a service named ser vi ceX

o0 The "in container” setup script is usually called i nCont ai ner Set upSer vi ceX. sh

o The script taking care of the dynamic configuration and the starting of the service - the one
actually called by SystemD or Kubernetes upon service startup - is usually called
i nCont ai ner Start Servi ceX sh

o Then dependening on the type of service:

- For a native node service, the SystemD system configuration file is usually limited to
stopping and starting the docker container

- For a Kubernetes service, the Kubernetes deployment file usually create a deployment
(for ReplicaSet) or a StatefulSet along with all services required to reach the software
component.

4.3.3. Look for examples and get inspired

Look at examples and the way the eskimo pre-packages services are set up and get inspired
for implementing your own packages.

4.4. Eskimo services configuration

Creating the service setup folder and writing the set up. sh script is unfortunately not sufficient

for eskimo to be able to operate the service.
A few additional steps are required, most importantly, defining the new service in the
configuration file servi ces. j son.

4.4.1. Configuration file ser vi ces. j son

In order for a service to be understood and operable by eskimo, it needs to be declared in the
services configuration file ser vi ces. j son.

Eskimo understands how to operate a service from the configuration provided in

servi ces.json.

A service declaration in ser vi ces. j son for instance for ser vi ceX would be defined as
follows:

ServiceX declaration in ser vi ces. j son

"serviceX' @ {
"config": {

[mandatory] This is used to order the services in the status table on the
status page.
"order": [0-X],

[optional] whether or not it has to be instaled on every node
Default value is fal se.
"mandatory": [true,false],

[uni que] whether the service is a unique service (singpe instance) or a
mul tiple instances service
"uni que": [true,false],

[uni que] whether the service is managed through Kubernetes (true) or
natively on nodes with SystenD (fal se)
"kubernetes": [true,false],

[optional] name of the group to associate it in the status table
"group” : "{group nane}",

[mandatory] name of the service. nust be consistent with service under
' service_setup'

"name" "{service nane},

[mandatory] nane of the inmge. nust be consistent with docker inage nane
under ' packages_dev

Most of the time, this is the same as {service nane}

"i mageNane" : "{inmage nane},

[mandatory] where to place the service in 'Service Sel ection Wndow

"sel ectionLayout" : {
"row' @ [1 - X],
"col" : [1 - X

H

menory to allocate to the service
(negligible neans the service is excluded fromthe nenory allocation policy
Kubernetes services are accounted specifically:

- services running on all nodes are account as native services

- services running as replicaSet are accounted globally and their tota
required nenory is divided anmpongst all nodes.

#)

"menmory": "[negligible|snmall|nmediunmlarge|verylarge]"

[mandatory] The | ogo to use whenever displaying the service inthe U is
required

Use "images/{logo file_nane}" for resources packaged within eskinmo web app
Use "static_imges/{logo_file_nanme}" for resources put in the eskinop

it di stribution folder "static_inmges"

(static_images is configurable in eskinop.properties with property
#i eski no. ext er nal LogoAndl conFol der)

"l ogo" : "[images|static_imges]/{logo_file_name}"

[mandatory] The icon to use ine the nenu for the service
Use "inmages/{icon_file_nanme}" for resources packaged w thin eskinp web app
Use "static_inmages/{icon_file_nane}" for resources put in the eskinop

di stribution folder "static_imges"

(static_imges is configurable in eskino.properties with property
#H eski no. ext er nal LogoAndl conFol der)

"icon" : "[inmges|static_inmages]/{icon_file_nane}"

[optional] This is used to have eskinp autonatically create and naintain
a system (OS) |level user on each and every node of the eskinmp cluster
"user": {

The usernane of the user to create
" "{usernane}", ## e.g. "kafka"

nane" :

The user ID (/)U D) of the user to create
"id"': {UD ## e.g. 3303
}.

The specific Kubernetes configuration for kubernetes=true services
"kubeConfig": {

the resource request to be nmade by PODs
"request": {

The nunber of CPUs to be allocated to the PODX(s) by Kubernetes
Format : X for X cpus, can have decinal val ues
"cpu": "{nunber of CPU}, ## e.g. 0.5

The anmount of RAMto be allocated to the POD(s) by Kubernetes
Format: X[k|mg|p] where k, mg,p are multipliers (kilo, nega, etc.)
"ranm': "{anmount of RAM, ## e.g. 1600m

}
}
b

[optional] configuration of the serice web console (if anym
"ui " {

[optional] (A) either URL tenplate should be configured ...
"url Tenpl ate": "http://{NODE_ADDRESS}: { PORT}/",

[optional] (B) or proxy configuration in case the service has
to be proxied by eskino
"proxyTargetPort" : {target port},

[mandatory] the tine to wait for the web console to initialize before
making it available (expressed in mlliseconds)

(Gving a few seconds is always a good idea, specific services such as
ki bana need nore than 8 seconds to properly initialize)

"waitTinme": {1000 - X},

[mandatory] the nane of the service i nthe left nenu
"title" : "{nenu nane}",

[mandatory] the role that the | ogged in user needs to have to be able
to see and use the service (Ul)
Possi bl e val ues are :

- "*" for any role (open access)

- "ADMN' to |limt usage to adnministrators

- "USER' to limt usage to users (nmamkes little sense)
"role" : "[*| ADM N USER] ",

[optional] the title to use for the link to the service on the status page
"statusPageLinktitle" : "{Link Title}"

[optional] Whether standard rewrite rules need to be applied to this
service

(Standard rewrite rules are docunented hereunder)

(default is true)

"appl ySt andar dPr oxyRepl acenents": [true|fal se],

[optional] List of customrewite rules for proxying of web consol es
"proxyRepl acenents" : [

first rewite rule. As many as required can be decl ared

{
[mandatory] Type of rwite rule. At the nonment only PLAIN is supported
for full text search and repl ace
In the future REGEXP type shall be inplenented
"type" : "[PLAIN",
[optional] a text searched in the URL. this replacenment is applied only
if the text is found in the URL
"urlPattern" : "{url_pattern}", ## e.g. controllers.js
[mandatory] source text to be repl aced
"source" : "{source URL}", ## e.g. "/API"
[mandatory] replacenent text
"target" : "{proxied_URL}" ## e.g. "/eskino/kibanal/APl"
}

1

[optional] List of page scripter
Page scripters are added to the target resource just above the closing
' body' tag
"pageScripters" : |
{

[mandatory] the target resource where the script should be added
"resourceUrl" : "{relative path to target resource}"

[mandat pry] content of the 'script' tag to be added
"script": "{javascript script}"
}
1.

[optional] list of URL in headers (e.g. for redirects) that should be
rewitten
"url Rewriting" : [

{

[mandatory] the start pattern of the URL to be searched in returned headers
"startUl" : "{searched prefix}" ## e.g. "{APP_ROOT_URL}/history/",

[mandatory] the replacenent for that pattern

"replacenent” : "{replacenment}" ## e.qg.
"{ APP_ROOT_URL}/ spar k- consol e/ hi story/"

]
.

[optional] Master detection strategy.

Whenever the administrator wants to expose a Web U on a services running
as multiple instances throughout the Eskino cluster, then defining this
1s mandatory

"masterDetection": {

[mandatory] the strategy to use (only "LOG FILE" is supported for now)
"strategy" : "LOG FILE",

[mandatory] the log file to search for the marker in the last |ines
"logFile" : "{log file to search in}", ## e.qg. /var/log/gluster/egm/egm.]|og"

[mandatory] the marker to search for
"grep": "{marker to search for}", ## e.g. "I amthe new | eader”

[mandatory] the RECEX to extract the tinmestanp fromthe log |ine

contai ning the marker

"timeSt anpExtract Rexp" : "{REGEX to extract the tinmesanp}", ## e.g
([0-9\\ -1+ [0-9.:,]+).*"

[mandatory] the Sinpl eDateFornmat pattern to parse the tinestanp
"timeStanmpFormat” : "{tinesanp format}", ## e.g. "yyyy-MMdd HH mm ss, SSS"

b

[optional] array of dependencies that need to be avail abl e and confi gured
"dependenci es": [

first dependency. As many as required can be decl ared

{

[mandatory] For services not operated by kubernetes, this is
essential: it defines how the master service is detern ned
"mast er El ectionStrategy":
" [NONE| FI RST_NODE| SAME_NODE_OR_RANDOM RANDOVM RANDOM NODE_AFTER| SAVE_NODE| ALI _NODES]

[mandatory] the service relating to this dependency
"mast er Servi ce": "{master service name}",

[mandatory] The nunber of naster expected
"nunber O Masters": [1-Xx],

whet her that dependency is mandatory or not
"mandatory": [true|false],

whet her or not the dependent service (parent JSON definition) should be
restarted in case an operation affects this service
"restart": [true|fal se],

[optional] Hooks are command to be called on master whenever an action
i s performed on service
"hooks": {

[optional] A preinstall hook is a command called on nmaster whenever the
service is about to be uninstalled
"preUninstal | Hok": "{comrand}" ## e.g

"/usr/l ocal / bi n/ eski no- kubect| del ete_node NULL {service.node. address}"

]

[optional] array of configuration properties that should be editable using the
Eskinmp U . These configuration properties are injected
"edi t abl eConfigurations": [

first editable configuration. As many as required can be decl ared

{

the name of the configuration file to search for in the software
installation directory (and sub-fol ders)
"filename": "{configuration file nanme}", ## e.g. "server.properties"

the nanme of the service installation folder under /usr/local/lib
(eskinob standard installation path)

"filesystenService": "{folder name}", ## e.g. "kafka"

the type of the property syntax

- "variable" for a sinple approach where a variable declaration of the

#H expected format is searched for

- "regex" for a nore advanced approach where the configuration is searched
#Ht and repl aces using the regex given in fornat

"propertyType": "variable",

The format of the property definition in the configuration file
Supported formats are:

- "{name}: {value}" or

- "{nane}={val ue}" or

- "{name} = s{value} or"

- "REXG with {nanme} and {val ue} as pl acehol ders"
"propertyFormat": "property format", ## e.g. "{nane}={val ue}"

The prefix to use in the configuration file for coments
"conment Prefix": "#",

The list of properties to be editable by adm nistrators using the eskinmo U
“"properties": [

first property. As many as required can be decl ared

{

name of the property
"nanme": "{property name}", ## e.g. "num network.threads"”

the description to showin the U
"comment": "{property description}",

the default value to use if undefined by adm nistrators
"defaul tValue": "{default property value}", ## e.g. "3"

[optional] a REGEX used to validate the user input value
"val i dati onRegex": "{REGEX}" ## e.g. "/~[0-9\\.]+$"

]
}
I

[optional] array of custom commands that are made avail able fromthe context
menu on the System Status Page (when clicking on services status (OK/KQ etc.)
"commands" : [

{

| D of the conmand. Needs to be a string with only [a-zA-Z_]
"id* : "{command_id}", ## e.g. "show_|og"

Name of the command. This nane is displayed in the nenu
"name" : "{conmand_nane}", ## e.g. "Show Logs"

The System command to be called on the node running the service
"command": "{system command}", ## e.g. "cat /var/log/ntp/ntp.log"

The font-awesone icon to be displayed in the nenu
"icon": "{fa-icon}" ## e.g. "fa-file"
}
1,

Addi tional environnent information to be generated in eskinop_topol ogy.sh

This can contain nmultiple values, all possibilities are |isted underneath as
exanpl e

"addi tional Environnment": {

Create an env var that lists all nodes where serviceX is installed
"ALL_NODES LI ST_servi ceX",

Create a env var that gives the nunber for this service, in a consistent and
persistent way (can be 0 or 1 based
" SERVI CE_NUVBER [0| 1] _BASED",

Gve in evnv var the context path under which the eskino Wen Use Interface is
depl oyed
" CONTEXT_PATH"

}
}

(Bear in mind that since json actually doesn't support such thing as comments, the example
above is actually not a valid JSON snippet - comments starting with "##' would need to be
removed.)

Everything is pretty straightforward and one should really look at the services pre-packaged
within eskimo to get inspiration when designing a new service to be operated by eskimo.

4.4.2. Eskimo Topology and dependency management

As stated above, the most essential configuration property in a service definition is the

mast er El ecti onSt r at egy of a dependency.

The whole master / slave topology management logic as well as the whole dependencies
framework of eskimo relies on it.

This is especially important for non-kubernetes services since most of the time the notion of
"master” (in the eskimo sense) is replaced by the usage of a kubernetes service definition to
reach the software component deployed on Kubernetes.

This is a little confusing in this documentation BTW. Most of the time in this
documentation, by kubernetes service we mean an eskimo service deployed on
Kubernetes, and not the service definition / feature of kubernetes.

Master Election strategy
Let's start by introducing what are the supported values for this mast er El ecti onSt r at egy
property:

o NONE: This is the simplest case. This enables a service to define as requiring another service

without bothering where it should be installed. It just has to be present somewhere on the
cluster and the first service doesn't care where.

It however enforces the presence of that dependency service somewhere and refuses to
validate the installation if the dependency is not available somewhere on the eskimo nodes
cluster.

FI RST_NODE : This is used to define a simple dependency on another service. In addition,

FI RST_NCDE indicates that the service where it is declared wants to know about at least one
node where the dependency service is available.

That other node should be the first node found where that dependency service is available.
First node means that the nodes are processed by their order of declaration. The first node
than runs the dependency service will be given as dependency to the declaring service.

SAME_NODE_OR_RANDOM: This is used to define a simple dependency on another service. In
details, SAME_NODE_OR_RANDOMindicates that the first service wants to know about at least
one node where the dependency service is available.

In the case of SAME_NODE_OR_RANDOM eskimo tries to find the dependency service on the
very same node than the one running the declaring service if that dependent service is
available on that very same node.

If no instance of the dependency service is not running on the very same node, then any
other random node running the dependency service is used as dependency. (This is only
possible for native nodes SystemD services)

RANDOM: This is used to define a simple dependency on another service. In details, RANDOM
indicates that the first service wants to know about at least one node where the dependency
service is available. That other node can be any other node of the cluster where the
dependency service is installed.

RANDOM _NODE_AFTER: This is used to define a simple dependency on another service. In
details, RANDOM NCDE_AFTER indicates that the first service wants to know about at least
one node where that dependency service is available.

That other node should be any node of the cluster where the second service is installed yet
with a node number (internal eskimo node declaration order) greater than the current node
where the first service is installed.

This is useful to define a chain of dependencies where every node instance depends on
another node instance in a circular way - pretty nifty for instance for elasticsearch discovery
configuration if the operator wants to install them as native services. (This is only possible for
native nodes SystemD services)

SAME_NODE : This means that the dependency service is expected to be available on the
same node than the first service, otherwise eskimo will report an error during service
installation. (This is only possible for native nodes SystemD services)

ALL_NODES : this means that every service defining this dependency will receive the full list
of nodes running the master service in an topology variable.

The best way to understand this is to look at the examples in eskimo pre-packaged services
declared in the bundled ser vi ces. j son.

Examples

Let's see some examples.

o Etcd wants to use the co-located instance of gluster. Since gluster is expected to be
available from all nodes of the eskimo cluster, this dependency is simply expressed as:

etcd dependency on gluster

"dependenci es": [

{
"master El ecti onStrategy": "SAME_NCDE",
"masterService": "gluster",
"nunber O Masters": 1,
"mandat ory": fal se,
"restart": true

}
]

0 kube-slave services needs to reach the first node where kube-master is available (only one
in Eskimo Community edition in anyway), so the dependency is defined as follows:

kube-slave dependency on first kube-master

"dependenci es": [

{
"master El ectionStrategy": "FlIRST_NODE",
"mast er Servi ce": "kube-master",
"nunber O Masters": 1,
"mandat ory": true,
"restart": true
H

o kafka-manager needs to reach any random instance of kafka running on the cluster, so the
dependency is expressed as simply as:

kafka-manager dependency on kafka:

"dependenci es": |

{
"masterEl ectionStrategy": "FIRST_NODE",
"mast er Servi ce": "zookeeper",
"nunber O Masters": 1,
"mandat ory": true,
"restart": true
},
{
"master El ecti onStrategy": "RANDOM',
"mast er Servi ce": "kafka",
"nunber O Masters": 1,
"mandat ory": true,
"restart": false
}

Look at other examples to get inspired.

4.4.3. Memory allocation

Another pretty important property in a service configuration in ser vi ces. j son is the memory
consumption property: menory.

Services memory configuration
The possible values for that property are as follows :
o negl i gi bl e : the service is not accounted in memory allocation
o smal | :the service gets a single share of memory
o medi um: the service gets two shares of memory
o | ar ge : the service gets three shares of memory

The system then works by computing the sum of shares for all nodes and then allocating the
available memory on the node to every service by dividing it amongst shares and allocating the
corresponding portion of memory to every service.

Of course, the system first removes from the available memory a significant portion to ensure
some room for kernel and filesystem cache.

Also, Kubernetes services deployed as statefulSet on every node are accounted on every node;
while unique kubernetes services are accounted only partially, with a ratio corresponding to the
amount of memory it would take divided by the number of nodes.

Since unique Kubernetes services are spread among nodes, this works well in practice as it's
quite realistic.

Examples of memory allocation
Let's imagine the following services installed on a cluster node, along with their memory
setting:
Native services :
o ntp - negligible
o prometheus - negligible
o gluster - negligible
o0 zookeeper - small
Kubernetes services :
o elasticsearch - large
o logstash - small
o kafka - large
o kibana - medium
o zeppelin - very large
The following table gives various examples in terms of memory allocation for three different
total RAM size values on the cluster node running these services.

The different columns gives how much memory is allocated to the different services in the
different rows for various size of total RAM.

Node total Nbr. parts 8 Gb node 16 Gb node 0o Gb node
RAM

ntp 0 - - -
prometheus [0 - - -
gluster 0 - - -
zookeeper 1 525m 1125m 1425m
elasticsearch 3 1575m 3375mM 1275m
logstash 1 525m 1125m 1425m
kafka 3 1575m 3375m 4275m
kibana 2/3" 350M 750m 050mM
zeppelin 5/3" 875m 1875m 2375m
Filesystem 3 1575Mm 3375M U275m
cache reserve

OS reserve - 1000mM 1000mM 10o00om

("For 3 nodes)

The services Kibana and Zeppelin are unique services running on Kubernetes, this example
above accounts that there would be 3 nodes in the cluster, hence their memory share is split by
3 on each node.

Kubernetes services memory configuration

The memory configurtion above is injected directly in the services themselves, without any
consideration for the memory requested by the corresponding Kubernetes POD. One should
take that into account and declare a comparable amount of memory when declaring the
requested POD memory for Kubernetes Services. In fact, one should declare a little more
memory as Kubernetes requested memory for POD accounting for overhead.

Custom memory allocation

Every Eskimo service provides a mean for an administrator to specify the memory the service
process should be using in the Eskimo Service Settings Configuration page.

4.4.4. Topology file on cluster nodes

Every time the cluster nodes / services configuration is changed. Eskimo will verify the global
services topology and generate for every node of the cluster a "topology definition file".

That topology definition file defines all the dependencies and where to find them (using the
notion of MASTER) for every service running on every node. It also gives indications about the
last known services installation status along with kubernetes memory and cpu requests, etc.

The "topology definition file" can be fond on nodes in/ et ¢/ eski no_t opol ogy. sh.

4.5. Proxying services web consoles

Many services managed by eskimo have web consoles used to administer them, such as the
kubernetes dashboard, cerebro, kafka-manager, etc. Some are even only web consoles used to
administer other services or perform Data Science tasks, such as Kibana, Zeppelin or Grafana,
etc.

With Eskimo, these consoles, either running natively or managed by kubernetes, are reach from
within Eskimo and can be completely isolated from the client network.

Eskimo provides these Web User Interfaces in its own Ul and takes care of proxying the
backend call through SSH tunnels to the actual service running in the Eskimo cluster.

Proxying is however a little more complicated to set up since eskimo needs to perform a lot of
rewriting on the text resources (javascript, html and json) served by the proxied web console to
rewrite served URLs to make them pass through the proxy.

Eskimo provides a powerful rewrite engine that one can use to implement the rewrite rules
defined in the configuration as presented above.

The minimum configuration that needs to be given to put in place a proxy for a service is to
give a value to the property [servi ceNane] . ui . proxyTar get Port indicating the target
port where to find the service (either on the cluster npdes where it runs or through the
Kubernetes proxy.).

The different possibilities to configure rewrite rules and replacements are presented above in
the section Configuration file ser vi ces. j son.

4.5.1. Source text replacements

Proxying web consoles HTTP flow means that a lot of the text resources served by the
individual target web consoles need to be processed in such a way that absolute URLs are
rewritten. This is unfortunately tricky and many different situations can occur, from URL build
dynamically in javascript to static resources URLs in CSS files for instance.

An eskimo service developer needs to analyze the application, debug it and understand every
pattern that needs to be replaced and define a proxy replacement for each of them.

Standard replacements

A set of standard proxy replacements are implemented once and for all by the eskimo HTTP
proxy for all services. By default these standard rewrite rules are enabled for a service unless
the service config declares " appl ySt andar dPr oxyRepl acenment s": fal se in which case
they are not applied to that specific service.

This is useful when a standard rule is actually harming a specific web console behaviour.

The standard replacements are as follows:

Standard replacements

{

"type" : "PLAIN',

"source" : "src=\"/",

"target" : "src=\"/{PREFI X_PATH /"
},
{

"type" : "PLAIN',

"source" : "action=\"/",

"target" : "action=\"/{PREFI X_PATH}/"
I
{

"type" : "PLAIN',

"source" : "href=\"/",

"target" : "href=\"/{PREFI X_PATH}/"
I
{

"type" : "PLAIN',

"source" : "href=/",

"target" : "href="/{PREFI X_PATH}/"
I
{

"type" : "PLAIN',

"source" : "url (\"/",

"target" : "url (\"/{PREFI X_PATH}/"
I8
{

"type" : "PLAIN',

"source" : "url('/",

"target" : "url (' /{PREFI X_PATH} /"
|8
{

"type" : "PLAIN',

“source" : "url(/",

"target" : "url (/{PREFI X_PATH} /"
b
{

"type" : "PLAIN',

"source" : "/api/v1l",

"target" : "/ {PREFI X_PATH}/api/v1l"
H
{

"type" : "PLAIN',

"source" : "\"/static/",

"target" : "\"/{PREFI X_PATH}/static/"
8

Custom replacements

In addition to the standard rewrite rules - that can be used or not by a service web console - an
eskimo service developer can define as many custom rewrite rules as he wants in the service
configuration in ser vi ces. j son as presented above.

Some patterns can be used in both the sour ce and t ar get strings that will be replaced by the
framework before they are searched, respectively injected, in the text stream:

o CONTEXT_PATH will be resolved by the context root at which the eskimo web application is
deployed, such as for instance eski no

o PREFI X_PATH will be resolved by the specific context path of the service web console
context, such as for instance for kibana { CONTEXT_PATH} / ki bana, e.g. eski no/ ki bana or
ki bana if no context root is used.

o0 APP_ROOT_URL will be resolved to the full URL used to reach eskimo, e.g.
http://1ocal host: 9191/ eski no

4.5.2. URL rewriting

URL rewriting is another mechanism available to fine tune eskimo proxying.

Sometimes, a service backend sends a redirect (HT TP code 302 or else) to an absolute URL. In
such cases, the absolute URL needs to be replaced by the corresponding sub-path in the
eskimo context.

This is achieved using URL rewriting rules.
URL rewriting rule example for spark-console

"url Rewriting" : [
{
"startUrl" : "{APP_ROOT_URL}/history/",

"replacenment” : "{APP_ROOT_URL}/ spark-consol e/ hi story/"
}
The spark history servre uses such redirect when it is loading a spark log file for as long as the
spark log file is being loaded. The rule above takes care or replacing such URL used in the
HTTP redirect.

4.5.3. Page scripters
Page scripters form a third mechanism aimed at customizing the behaviour of proxied

application. They consists of declaring a javascript snippet that is injected at the bottom of the
body tag in the referenced HTML document.

4.5.4. Master detection system (for multiple instances services)

Services running as unique service are detected automatically by the proxy redirection system
and administrator have nothing specific to do for the proxying to work effectively.

Services running as multiple instances services are another story. Eskimo needs a way to
understand which of these multiple instances is currently the master.

Imaging a zookeeper cluster for instance. At any moment in time, only one of the is master. But
the master can change at any moment and eskimo might need a way to know about this. Now
Zookeeper is not a good example since the slave instances would still be able to answer
requests.

A better example is EGMI: Slave EGMI instance User Interfaces redirect the user automatically
to the master EGMI User Interface (URL). This unfortunately can't work in ESKIMO since this
redirection is not compatible with the Eskimo proxying system. So Eskimo needs a way to know
at any given moment in time which is the EGMI master to direct the user to.

http://localhost:9191/eskimo

This is achieved by using the Master Detection sub-system.
This is how this system is used by EGMI in ser vi ces. j son:

master detection for EGMIlin servi ces. j son

"mast er Det ection": {
"strategy" : "LOG FILE",
"logFile" : "/var/log/gluster/egm/egm.|og",
"grep": "I amthe new | eader",
"timeStanpExtract Rexp" @ "([0-9\\-]+ [0-9.:,]+).*",
"timeStanmpFormat" : "yyyy- M dd HH nm ss, SSS"

}

And this is how it works:

o "strategy" : "LOG_FILE" means that the system will parse the log file of the different
instances searching for a specific marker. As of current version of Eskimo (0.5) LOG_FI LE is
the only supported strategy.

o The "1 ogFi | e" configuration defines the log file to search for the marker in the last lines.
o "grep" gives the marker to be searched for

o "timeStanpExtract Rexp" and"ti neSt anpFor mat " are used to be able to get the
timestamp if the log entry containing the searched marker. This is crucial to underatand
which is the last one, giving us the latest master.

Everytime a service with multiple running instances is deployed (either natively on cluster
nodes or through kubernetes, this really doesn't matter) and if this service provides a WEB Ul
that the administrator wants to expose through the Eskimo proxy to the Eskimo Ul, then such a
master detection definition needs to be provided.

4.6. BASH Utilities framework and functions

Eskimo provides multiple utility features and functions to ease the development of new
services within Eskimo. Most of these functions and features are implemented in the file
eski mo-uti | s. shinstalled by the base Eskimo setup step on cluster nodes in

[usr/| ocal /sbhin.

Some other features are provided as independent scripts.

This is noe detailed below.

4.6.1. Locking Framework

Whenever a service is starting, it's sometimes required to take a lock to ensure multiple
services requiring the same resource - such as a gluster mount for instance, or services
initializing a common configuration file - avoid spurious effects comming from race conditions.
This is especially important for native node services starting on multiple nodes at the very same
time.

Eskimo provides a locking framework based on filesystem-level locks (f | ock primitive) that can
very well work in a distributed way to synchronize services cluster-wide by leveraging on
Gluster FS.

The BASH functions provided by eskimo for this purpose in eski mb- uti | s. sh are as follows:

o take_| ock takes a lock based on the file passed in argument.
eg.take_l ock test_lock /var/lib/eskin would take a lock called test_lock on an
ad’hoc file created in the folder / var/ | i b/ eski nmo.
Acalltotake | ock “exports a variable called “LAST _LOCK HANDLE where the

lock handle identifier to be used in order to release the lock later on is stored. This should be
saved in another user-level variable immediately after a call to t ake_| ock.

o rel ease_| ock releases a lock identified by the handle identifier passed in argument.
eg.rel ease_l ock 732:/var/lib/eskino/test_| ock.| ock would release the lock
taken by the preceding example. A more realistic call would be r el ease_| ock
$LAST_LOCK_HANDLE as explained above, even though that is discouraged and the user
should favor storing that variable value in another user-defined variable.

o take_gl obal _| ock behaves ast ake_| ock except that the user doesn't need to explicitly
release the lock.
A lock taken with t ake_gl obal _I ock is released automatically when the shell process
exits. Global here is meant as global to the process.

These locking functions are used extensively in Eskimo pre-packaged services, have a look and
get inspired.

4.6.2. CLI utilities docker volume mount needs detection

CLI utilities in eskimo pre-packages services - such as logstash, pyspark, flink-shell, etc. - are
implemented as wrappers that instantiates the real CLI command in a docker container
containing the relevant software stack properly installed and configured.

This causes problems whenever these command line tools takes in argument folder or files
from the local filesystem since these folders and files wouldn't be available from within the
docker container.

For this reason, Eskimo provides an utility function called

parse_cli _docker_vol une_nounts ineski no-util s. sh. This function parses the
command line tool supported arguments and defines the corresponding mount options to be
used by docker run to make these folders and files available from within the container as
well.

The function par se_cl i _docker _vol une_nount s is invoked as follows:

parse_cli _docker_volune_nounts "arg flags _to_search_for" type [separator]
"$@

where type is either mul t i pl e - whenever multiple files or folders can be passed to the
corresponding argument, in which case the separator must be indicated as well - or si ngl e - in
which case a single file or folder path is expected.

Some examples:

o parse_cli _docker_volunme_nounts "--jars,--py-files,--files" multiple ",
"$@
seachesfor-jars,--py-filesand--filesargumentsin $@and supports finding many
paths seperated by a comma.

n

o parse_cli _docker _volunme_nounts "-driver-class-path" nmultiple ":" "$@
searches for a typical classpath definition passed as - dri ver - cl ass- pat hin $@

o parse_cli_docker_vol une_nounts "--properties-file" single "$@
searches for a properties file passed as - - properties-fil ein$@
This function is used everywhere in every command from the Eskimo CLI packages, have a look

and get inspired.

4.6.3. Getting last tag to use for an Eskimo service docker image
As explained in the next section Docker Images Versioning, Eskimo services docker images

follow a versioning scheme where a re-installation of a service (following a customization script
evolution for instance, or an upgrade of the underlying software component, or whatever)
causes the version (image tag) to be incremented.

For this reason, whenever a SystemD service startup script or a Kubernetes Deployment
descriptor generation script wants to start a service, it first needs to find out about the latest
version / tag to use.

The function get _| ast _t ag in eski mo-util s. shis provided for this purpose. It's invoked by
passing the eskimo service hame (which resolves the docker image hame by convention) to the
function call and returns on stdout the latest tag found either in Docker registry or in local
docker image set.

4.6.4. Gluster Mount utility script
Gluster shares are mounted at runtime using standard mount command (fuse filesystem).

However eskimo provides Toolbox script that takes care of all the burden of managing shared
folders with gluster.

This Toolbox script is the available on cluster nodes at: / usr/ | ocal / shi n/ gl ust er -
mount . sh.
This script is called as follows:

calling /usr/local/sbin/gluster-mount.sh
/usr/ 1 ocal /sbhin/gluster-nount.sh VOLUVE_NAME MOUNT_PO NT OMNER _USER | D
where:
o VOLUME_NAME is the name of the volume to be created in the gluster cluster
o MOUNT_PQO NT is the folder where to mount that volume on the local filesystem.
0 OMNNER_USER | Dthe user to which the mount points should belong

The beauty of this script is that it takes care of everything, from manipulating / et ¢/ f st ab to
configuring SystemD automount properly, etc.

This script is related to the mount part (the client part) on hosts OSes running on the Eskimo
cluster. A similar script is provided to run from within container to mount gluster shares from
within containers (as required for instance for kubernetes operated services) :

i nCont ai ner Mount G ust er . sh.

EGMI takes care of the GlusterFS backend management part.

4.7. Docker Images Versioning

Eskimo services docker images are versioned by incrementing the tag attribute every time the
service gets reinstalled by eskimo.

4.7.1. Principle

The different scripts presented above in chapter Services Installation Framework and available
with each and every service as part of the Services Installation Framwork can be customized at
will and as often as required.

Whenever one of these scripts is updated or customized, one simply needs to reinstall the
service using

o either the "Setup Eskimo Nodes" platform administration menu entry (for node native
services)

o or the "Setup Kube Services" platformadministration menu entry (for node kubernetes
services)

This can be done as frequently as required.

The system works by incrementing the image tag number at each and every installation and
restarting the service (either using SystemD for native services, or kubectl for Kubernetes
services.

The first time a service is installed, it will get the number "1" as tag, the second time will make
the tag number increased to the number "2", and so on.

The system automatically purges and clobbers the previous tags and the docker filesystem
layers (overlay) that might not be required anymore.

4.7.2. Services Customization Tool

Services can be customized by updating or customizing the different scripts presented in
Services Installation Framework above and available with each and every service. As explained
in Docker Images Versioning, this can be done at will and one just needs to reinstall the
corresponding service to make his changes deployed on the system.

But eskimo also provides an utility tool to perform such customization on the live systen,
without requiring to get back to the eskimo Ul and reinstall a service from the Ul.

Whenever one is developing a new service or feature, having to get back to Eskimo and the full
reinstallation procedure is cumbersome. This script is intended for this purpose, being able to
quickly evolve services in an efficient and easy fashion.

The principle is illustrated as follows:

System Customization Tool

Customization

eskimo-edit-image.sh
> Customize service Docker image

post-installation and make it
available to services

Calls

Customization
Shellor script

Increaseversion

This tool takes the form of a shell script and is named eski no- edi t - i mage. sh.
‘eskimo-edit-image.sh usage

[root @est-nodel vagrant]# eskinp-edit-inmge.sh -h

eskino-edit-inmage [-h] SERVI CE [SCRI PT]

where SERVICE is the eskinp service / container nane whose inmage is to be edited
SCRIPT is an optional script path to perfom custonization

[root @est-nodel vagrant]#

It takes as argument the name of the service to be modified (which corresponds to the docker
image name once a service is installed) as well as an optional shell script path aimed at
performing the customization.

If the customization script is omitted, then an interactive shell prompt is presented to the user
for him to be able to perform the customization interactively.

As an example, this would be the way to make the vi mcommand available in the cer ebr o
container:

Install vi min cerebro

[root @est-nodel vagrant]# eskino-edit-inmage.sh cerebro
- Image to be edited is kubernetes.registry: 5000/ cerebro
- Parsing argunents
- Creating Kubernetes service DNS entries
- Tenp container nane i s e6d78843-9469-4ed2- bb04- a381d0e588a5
- Finding new tag for container inmage
- Launchi ng Container ...
- Invoking shell in container. You can now type commands!
root @est-nodel:/# apt-get install vim
Readi ng package lists... Done
Bui | di ng dependency tree... Done
Readi ng state infornmation... Done
The following additional packages will be installed:
Vi m comon vi mruntime xxd
Suggest ed packages:
ctags vimdoc vimscripts
The followi ng NEW packages will be install ed:
vVimvimcomon vimruntinme xxd
0 upgraded, 4 newly installed, O to remobve and O not upgraded.
Need to get 8138 kB of archives.
After this operation, 36.9 MB of additional disk space will be used.
Do you want to continue? [Y/n] y

root @est-nodel:/# exit

exit

- Custom zation conmmand exited successfully, will now save change as new tag in

kuber net es. regi stry: 5000/ cerebro: 2

- Committing the changes to the container

- Stopping contai ner

- Pushing inmage in docker registry

- Deleting previous tag

- Deleting previous container image tag 1

- Attenpting to delete it with registry tag as well

- Searching for previous image tag 1 in registry to delete it (if appliable)
+ Del eting previous container inage tag 1 fromregistry
+ Garbage collecting |layers

As a result of the above sequence, a new tag version "2" will be available in the system for the
docker image use by the service cer ebr o.

The user is then left with restarting cerebro manually on Kubernetes, which can be done with
the help of the eski np- kubect | command:

restarting cerebro on Kubernetes

[root @est-nodel vagrant]# eskinp-kubect| restart cerebro kubernetes
- Restart Service cerebro
+ Del eting cerebro
service "cerebro" del eted
depl oynent . apps "cerebro" del eted
+ (Re-)applying cerebro
service/ cerebro created
depl oynent . apps/ cerebro created
[root @est-nodel vagrant]#

Appendix A: Copyright and License

Eskimo is Copyright 2019 - 2023 eskimo.sh / https.//www.eskimo.sh - All rights reserved.
Author : eskimo.sh / https://www.eskimo.sh

Eskimo is available under a dual licensing model : commercial and GNU AGPL.

If you did not acquire a commercial licence for Eskimo, you can still use it and consider it free
software under the terms of the GNU Affero Public License. You can redistribute it and/or
modify it under the terms of the GNU Affero Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

Compliance to each and every aspect of the GNU Affero Public License is mandatory for users
who did no acquire a commercial license.

Eskimo is distributed as a free software under GNU AGPL in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero Public License for more details.

You should have received a copy of the GNU Affero Public License along with Eskimo. If not,
see https.//www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA, 02110-1301 USA.

You can be released from the requirements of the license by purchasing a commercial license.
Buying such a commercial license is mandatory as soon as :

o you develop activities involving Eskimo without disclosing the source code of your own
product, software, platform, use cases or scripts.

o you deploy eskimo as part of a commercial product, platform or software.
For more information, please contact eskimo.sh at https://www.eskimo.sh

The above copyright notice and this licensing notice shall be included in all copies or
substantial portions of the Software.

https://www.eskimo.sh
https://www.eskimo.sh
https://www.gnu.org/licenses/
https://www.eskimo.sh

	Eskimo Service Developer Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Eskimo
	1.2. Key Features
	1.3. The Service Developer Guide

	Chapter 2. Introducing the Service Development Framework
	2.1. Principle schema
	2.2. Core principles
	2.3. A note on images' template download.

	Chapter 3. Docker Images Development Framework
	3.1. Requirements
	3.2. Principle
	3.3. identifying required images in services.json
	3.4. Standards and conventions over requirements
	3.5. Typical build.sh process
	3.5.1. Operations performed

	3.6. Look for examples and get inspired
	3.7. Building the Kubernetes archive
	3.8. Specific and various notes related to individual components shipped with Eskimo
	3.8.1. Zeppelin building

	3.9. Setting up a remote packages repository

	Chapter 4. Services Installation Framework
	4.1. Principle
	4.1.1. Gluster share mounts
	4.1.2. OS System Users creation

	4.2. Standards and conventions over requirements
	4.3. Typical setup.sh process
	4.3.1. Operations performed
	4.3.2. Standard and conventions
	4.3.3. Look for examples and get inspired

	4.4. Eskimo services configuration
	4.4.1. Configuration file services.json
	4.4.2. Eskimo Topology and dependency management
	Master Election strategy
	Examples

	4.4.3. Memory allocation
	Services memory configuration
	Examples of memory allocation
	Kubernetes services memory configuration
	Custom memory allocation

	4.4.4. Topology file on cluster nodes

	4.5. Proxying services web consoles
	4.5.1. Source text replacements
	Standard replacements
	Custom replacements

	4.5.2. URL rewriting
	4.5.3. Page scripters
	4.5.4. Master detection system (for multiple instances services)

	4.6. BASH Utilities framework and functions
	4.6.1. Locking Framework
	4.6.2. CLI utilities docker volume mount needs detection
	4.6.3. Getting last tag to use for an Eskimo service docker image
	4.6.4. Gluster Mount utility script

	4.7. Docker Images Versioning
	4.7.1. Principle
	4.7.2. Services Customization Tool

	Appendix A: Copyright and License

